A320792 Number of multisets of exactly seven partitions of positive integers into distinct parts with total sum of parts equal to n.
1, 1, 3, 5, 11, 19, 37, 63, 114, 192, 331, 547, 914, 1482, 2412, 3847, 6126, 9620, 15052, 23292, 35889, 54806, 83294, 125658, 188656, 281418, 417828, 616838, 906516, 1325457, 1929644, 2796189, 4035315, 5798648, 8300214, 11833892, 16810048, 23790327, 33552202
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..1000
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd, d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 8) end: a:= n-> coeff(b(n$2), x, 7): seq(a(n), n=7..60);
Formula
a(n) = [x^n y^7] Product_{j>=1} 1/(1-y*x^j)^A000009(j).