A320793 Number of multisets of exactly eight partitions of positive integers into distinct parts with total sum of parts equal to n.
1, 1, 3, 5, 11, 19, 37, 63, 115, 194, 336, 558, 938, 1530, 2508, 4030, 6472, 10246, 16179, 25270, 39325, 60664, 93187, 142119, 215800, 325647, 489288, 731154, 1087981, 1611036, 2375905, 3488306, 5101755, 7430869, 10783473, 15589092, 22457429, 32236645
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..1000
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd, d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 9) end: a:= n-> coeff(b(n$2), x, 8): seq(a(n), n=8..60);
Formula
a(n) = [x^n y^8] Product_{j>=1} 1/(1-y*x^j)^A000009(j).