A320794 Number of multisets of exactly nine partitions of positive integers into distinct parts with total sum of parts equal to n.
1, 1, 3, 5, 11, 19, 37, 63, 115, 195, 338, 563, 949, 1554, 2556, 4126, 6655, 10592, 16815, 26415, 41354, 64212, 99295, 152512, 233279, 354729, 537193, 809347, 1214485, 1814052, 2699197, 3999366, 5904074, 8682185, 12722807, 18576815, 27034032, 39208697
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..1000
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd, d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 10) end: a:= n-> coeff(b(n$2), x, 9): seq(a(n), n=9..60);
Formula
a(n) = [x^n y^9] Product_{j>=1} 1/(1-y*x^j)^A000009(j).