A320795 Number of multisets of exactly ten partitions of positive integers into distinct parts with total sum of parts equal to n.
1, 1, 3, 5, 11, 19, 37, 63, 115, 195, 339, 565, 954, 1565, 2580, 4174, 6751, 10775, 17161, 27051, 42510, 66261, 102900, 158746, 243955, 372778, 567443, 859492, 1296958, 1948458, 2916636, 4348377, 6460535, 9563222, 14109242, 20744995, 30405638, 44422190
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd, d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 11) end: a:= n-> coeff(b(n$2), x, 10): seq(a(n), n=10..60);
Formula
a(n) = [x^n y^10] Product_{j>=1} 1/(1-y*x^j)^A000009(j).