cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320802 Number of non-isomorphic aperiodic multiset partitions of weight n whose dual is also an aperiodic multiset partition.

Original entry on oeis.org

1, 1, 2, 8, 26, 89, 274, 908, 2955, 9926, 34021, 119367, 428612, 1574222, 5914324, 22699632, 88997058, 356058538, 1453059643, 6044132792, 25612530061, 110503625785, 485161109305, 2166488899640, 9835209048655, 45370059225137, 212582814591083, 1011306624492831
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2018

Keywords

Comments

Also the number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns where the multiset of rows and the multiset of columns are both aperiodic, up to row and column permutations.
A multiset is aperiodic if its multiplicities are relatively prime.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of non-isomorphic aperiodic multiset partitions of weight n whose parts have relatively prime periods, where the period of a multiset is the GCD of its multiplicities.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 26 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1},{2}}  {{1,2,2}}      {{1,2,2,2}}
                    {{1},{1,1}}    {{1,2,3,3}}
                    {{1},{2,2}}    {{1},{1,1,1}}
                    {{1},{2,3}}    {{1},{1,2,2}}
                    {{2},{1,2}}    {{1,1},{2,2}}
                    {{1},{2},{2}}  {{1},{2,2,2}}
                    {{1},{2},{3}}  {{1,2},{2,2}}
                                   {{1},{2,3,3}}
                                   {{1,2},{3,3}}
                                   {{1},{2,3,4}}
                                   {{1,3},{2,3}}
                                   {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{2,2}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{2,2}}
                                   {{1},{2},{3,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Formula

Second Moebius transform of A007716, or Moebius transform of A303546, where the Moebius transform of a sequence b is a(n) = Sum_{d|n} mu(d) * b(n/d).

Extensions

a(26)-a(27) from Jinyuan Wang, Jun 27 2020