A320804 Number of non-isomorphic multiset partitions of weight n with no singletons in which all parts are aperiodic multisets.
1, 0, 1, 2, 6, 13, 41, 104, 326, 958, 3096, 9958, 33869, 116806, 417741, 1526499, 5732931, 22015642, 86543717, 347495480, 1424832602, 5959123908, 25407212843, 110344848622, 487879651220, 2194697288628, 10039367091586, 46675057440634, 220447539120814
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions with aperiodic parts and no singletons: {{1,2}} {{1,2,2}} {{1,2,2,2}} {{1,1,2,2,2}} {{1,2,3}} {{1,2,3,3}} {{1,2,2,2,2}} {{1,2,3,4}} {{1,2,2,3,3}} {{1,2},{1,2}} {{1,2,3,3,3}} {{1,2},{3,4}} {{1,2,3,4,4}} {{1,3},{2,3}} {{1,2,3,4,5}} {{1,2},{1,2,2}} {{1,2},{2,3,3}} {{1,2},{3,4,4}} {{1,2},{3,4,5}} {{1,3},{2,3,3}} {{1,4},{2,3,4}} {{2,3},{1,2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))} S(q, t, k)={Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t)) + O(x*x^k), -k)} a(n)={if(n==0, 1, my(mbt=vector(n, d, moebius(d)), s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(dirmul(mbt, sum(t=1, n, K(q, t, n)/t)) - sum(t=1, n, S(q, t, n)/t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2023
Extensions
Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023
Comments