cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320804 Number of non-isomorphic multiset partitions of weight n with no singletons in which all parts are aperiodic multisets.

Original entry on oeis.org

1, 0, 1, 2, 6, 13, 41, 104, 326, 958, 3096, 9958, 33869, 116806, 417741, 1526499, 5732931, 22015642, 86543717, 347495480, 1424832602, 5959123908, 25407212843, 110344848622, 487879651220, 2194697288628, 10039367091586, 46675057440634, 220447539120814
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2018

Keywords

Comments

Also the number of nonnegative integer matrices with (1) sum of elements equal to n, (2) no zero columns, (3) no rows summing to 0 or 1, and (4) no rows whose nonzero entries have a common divisor > 1, up to row and column permutations.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions with aperiodic parts and no singletons:
  {{1,2}}  {{1,2,2}}  {{1,2,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,3,3}}    {{1,2,2,2,2}}
                      {{1,2,3,4}}    {{1,2,2,3,3}}
                      {{1,2},{1,2}}  {{1,2,3,3,3}}
                      {{1,2},{3,4}}  {{1,2,3,4,4}}
                      {{1,3},{2,3}}  {{1,2,3,4,5}}
                                     {{1,2},{1,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    S(q, t, k)={Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t))  + O(x*x^k), -k)}
    a(n)={if(n==0, 1, my(mbt=vector(n, d, moebius(d)), s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(dirmul(mbt, sum(t=1, n, K(q, t, n)/t)) - sum(t=1, n, S(q, t, n)/t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023