A320845 Permanent of the n X n symmetric Pascal matrix S(i, j) = A007318(i + j - 2, i - 2).
1, 3, 35, 1625, 301501, 223727931, 664027495067, 7882889445845553, 374307461786150039341, 71094317517818229430634443, 54016473080283197162871309369823, 164180413591614722725059485805374744105, 1996341102310530780023501278692058093020378765
Offset: 1
Keywords
Examples
For n = 1 the matrix S is 1 with the permanent equal to 1. For n = 2 the matrix S is 1, 1 1, 2 with the permanent equal to 3. For n = 3 the matrix S is 1, 1, 1 1, 2, 3 1, 3, 6 with the permanent equal to 35. For n = 4 the matrix S is 1, 1, 1, 1 1, 2, 3, 4 1, 3, 6, 10 1, 4, 10, 20 with the permanent equal to 1625. ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..26
- Eric Weisstein's World of Mathematics, Pascal Matrix
- Wikipedia, Pascal matrix
Programs
-
Maple
with(LinearAlgebra): a := n -> Permanent(Matrix(n, (i, j) -> binomial(i+j-2, i-1))): seq(a(n), n = 1 .. 15);
-
Mathematica
a[n_] := Permanent[Table[Binomial[i+j-2,i-1], {i, n}, {j, n}]]; Array[a, 15]
-
PARI
a(n) = matpermanent(matrix(n, n, i, j, binomial(i+j-2, i-1))); \\ Michel Marcus, Nov 05 2018
Comments