A320895 a(n) = Sum_{k=1..n} k^3 * tau(k), where tau is A000005.
1, 17, 71, 263, 513, 1377, 2063, 4111, 6298, 10298, 12960, 23328, 27722, 38698, 52198, 72678, 82504, 117496, 131214, 179214, 216258, 258850, 283184, 393776, 440651, 510955, 589687, 721399, 770177, 986177, 1045759, 1242367, 1386115, 1543331, 1714831, 2134735
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - The asymptotic ratio (1000000 terms)
Programs
-
Mathematica
Accumulate[Table[k^3*DivisorSigma[0, k], {k, 1, 50}]]
-
PARI
a(n) = sum(k=1, n, k^3*numdiv(k)); \\ Michel Marcus, Oct 23 2018
Formula
a(n) ~ n^4 * (log(n) + 2*gamma - 1/4)/4, where gamma is the Euler-Mascheroni constant A001620.
a(n) = Sum_{k=1..n} (k^3 / 4) * floor(n/k)^2 * floor(1 + n/k)^2. - Daniel Suteu, Nov 07 2018
Comments