cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A318755 a(n) = Sum_{k=1..n} tau(k)^3, where tau is A000005.

Original entry on oeis.org

1, 9, 17, 44, 52, 116, 124, 188, 215, 279, 287, 503, 511, 575, 639, 764, 772, 988, 996, 1212, 1276, 1340, 1348, 1860, 1887, 1951, 2015, 2231, 2239, 2751, 2759, 2975, 3039, 3103, 3167, 3896, 3904, 3968, 4032, 4544, 4552, 5064, 5072, 5288, 5504, 5568, 5576
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[DivisorSigma[0, Range[50]]^3]
  • PARI
    a(n) = sum(k=1, n, numdiv(k)^3); \\ Michel Marcus, Sep 03 2018

Formula

a(n) ~ n * (A1*log(n)^7 + A2*log(n)^6 + A3*log(n)^5 + A4*log(n)^4 + A5*log(n)^3 + A6*log(n)^2 + A7*log(n) + A8) [Ramanujan, 1916, formula (8)].
From Vaclav Kotesovec, Mar 12 2023: (Start)
Let f(s) = Product_{p prime} (1 - 9/p^(2*s) + 16/p^(3*s) - 9/p^(4*s) + 1/p^(6*s)), then
A1 = f(1)/5040 = 0.0000097860463451190658257888710490039661018239924009134296302566263529129...
A2 = ((8*gamma - 1)*f(1) + f'(1)) / 720 = 0.0007019997226174095261771358653540021199703406583347258622085873074052900...
A3 = (2 * f(1) * (1 - 8*gamma + 28*gamma^2 - 8*sg1) + 2*(8*gamma - 1)*f'(1) + f''(1)) / 240 = 0.0171707557268638504150726777646428533953516776541779590118582753709080243...
A4 = (6*f(1)*(-1 - 28*gamma^2 + 56*gamma^3 + gamma*(8 - 56*sg1) + 8*sg1 + 4*sg2) + 6*(1 - 8*gamma + 28*gamma^2 - 8*sg1)*f'(1) + (24*gamma - 3)*f''(1) + f'''(1)) / 144 = 0.1758477246705824231478998937203303065702508974398264386862202155788...,
where f(1) = Product_{p prime} (1 - 9/p^2 + 16/p^3 - 9/p^4 + 1/p^6) = 0.0493216735794000917619759100869799891531929217006036853364933968186814900...,
f'(1) = f(1) * Sum_{p prime} 6*(3*p + 1) * log(p) / ((p-1) * (p^2 + 4*p + 1)) = 0.3270075329904166293296173488834535949530448497141635531152019426434776932...,
f''(1) = f'(1)^2 / f(1) + f(1) * Sum_{p prime} -36 * p^2 * (p+1)^2 * log(p)^2 / ((p-1)^2 * (p^2 + 4*p + 1)^2) = 1.1340946589859924227356699847227569935993284591079455746283572890834872890...,
f'''(1) = 3*f'(1)*f''(1)/f(1) - 2*f'(1)^3/f(1)^2 + f(1) * Sum_{p prime} 72*p^2 * (p^5 + 3*p^4 + 8*p^3 + 8*p^2 + 3*p+ 1) * log(p)^3 / ((p-1)^3 * (p^2+ 4*p + 1)^3) = -1.3447542210274297874241826540796632006263184659735145444999327537246287...,
gamma is the Euler-Mascheroni constant A001620 and sg1, sg2 are the Stieltjes constants, see A082633 and A086279.
Approximate values of other constants:
A5 = 0.7626157870664479996781152281270580148665443022014605423466363134512...
A6 = 1.3720912878905940866975369743071441424192833481004753922122458993040...
A7 = 1.1416118168318711437057727816148048057614284471759625288073915723140...
A8 = 0.2618221765943171424958051160111945242076019991649774700610674747694...
(End)

A320896 a(n) = Sum_{k=1..n} k * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 9, 21, 57, 77, 173, 201, 329, 410, 570, 614, 1046, 1098, 1322, 1562, 1962, 2030, 2678, 2754, 3474, 3810, 4162, 4254, 5790, 6015, 6431, 6863, 7871, 7987, 9907, 10031, 11183, 11711, 12255, 12815, 15731, 15879, 16487, 17111, 19671, 19835, 22523, 22695, 24279
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^2 * (3*(Pi^6*(-1 - 24*g^2 + 32*g^3 + g*(8 - 96*s1) + 16*s1 + 16*s2) - 13824*z1^3 + 576*Pi^2*z1*((-1 + 8*g)*z1 + 4*z2) - 8*Pi^4*(3*(1 - 8*g + 24*g^2 - 16*s1)*z1 - 6*z2 + 48*g*z2 + 8*z3)) + 6*(Pi^6*(1 - 8*g + 24*g^2 - 16*s1) + 576*Pi^2*z1^2 - 24*Pi^4*(-z1 + 8*g*z1 + 2*z2))*log(n) + 6*((-1 + 8*g)*Pi^6 - 24*Pi^4*z1)*log(n)^2 + 4*Pi^6*log(n)^3) / (8*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A320897 a(n) = Sum_{k=1..n} k^2 * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 17, 53, 197, 297, 873, 1069, 2093, 2822, 4422, 4906, 10090, 10766, 13902, 17502, 23902, 25058, 36722, 38166, 52566, 59622, 67366, 69482, 106346, 111971, 122787, 134451, 162675, 166039, 223639, 227483, 264347, 281771, 300267, 319867, 424843, 430319, 453423
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Comments

In general, for m>=0, Sum_{k=1..n} k^m * tau(k)^2 ~ n^(m+1) * (log(n))^3 / ((m+1) * Pi^2).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^3 * (2*Pi^6*(-1 + 12*g - 54*g^2 + 108*g^3 + 36*s1 - 324*g*s1 + 54*s2) - 93312*z1^3 + 2592*Pi^2*z1*(-z1 + 12*g*z1 + 6*z2) - 72*Pi^4*(z1 - 12*g*z1 + 54*g^2*z1 - 36*s1*z1 - 3*z2 + 36*g*z2 + 6*z3) + 6*(Pi^6*(1 - 12*g + 54*g^2 - 36*s1) + 1296*Pi^2*z1^2 - 36*Pi^4*(-z1 + 12*g*z1 + 3*z2))*log(n) + 9*((-1 + 12*g)*Pi^6 - 36*Pi^4*z1)*log(n)^2 + 9*Pi^6*log(n)^3) / (27*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A386012 a(n) = n^3*tau(n).

Original entry on oeis.org

1, 16, 54, 192, 250, 864, 686, 2048, 2187, 4000, 2662, 10368, 4394, 10976, 13500, 20480, 9826, 34992, 13718, 48000, 37044, 42592, 24334, 110592, 46875, 70304, 78732, 131712, 48778, 216000, 59582, 196608, 143748, 157216, 171500, 419904, 101306, 219488, 237276, 512000
Offset: 1

Views

Author

R. J. Mathar, Jul 14 2025

Keywords

Comments

Dirichlet convolution of the cubes A000578 with themselves.

Crossrefs

Cf. A000005, A001620, A034714, A038040, A320895 (partial sums), A372928 (Mobius transform).

Programs

  • Maple
    seq( n^3*numtheory[tau](n),n=1..100) ;
  • Mathematica
    a[n_]:=n^3*DivisorSigma[0,n]; Array[a,40] (* Stefano Spezia, Jul 14 2025 *)
    nmax = 40; Rest[CoefficientList[Series[Sum[k^3*x^k*(1 + 4*x^k + x^(2*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 03 2025 *)
  • PARI
    a(n) = n^3 * numdiv(n); \\ Amiram Eldar, Jul 15 2025

Formula

a(n) = n*A034714(n) = n^2*A038040(n).
Dirichlet g.f.: zeta^2(s-3).
From Amiram Eldar, Jul 15 2025 (Start)
Multiplicative with a(p^e) = p^(3*e) * (e+1).
Sum_{k=1..n} a(k) ~ (n^4/4) * (log(n) + 2*gamma - 1/4), where gamma is Euler's constant (A001620). (End)
G.f.: Sum_{k>=1} k^3*x^k*(1 + 4*x^k + x^(2*k)) / (1-x^k)^4. - Vaclav Kotesovec, Aug 03 2025

A364194 a(n) = Sum_{k=1..n} k^3*sigma(k), where sigma is A000203.

Original entry on oeis.org

1, 25, 133, 581, 1331, 3923, 6667, 14347, 23824, 41824, 57796, 106180, 136938, 202794, 283794, 410770, 499204, 726652, 863832, 1199832, 1496184, 1879512, 2171520, 3000960, 3485335, 4223527, 5010847, 6240159, 6971829, 8915829, 9869141, 11933525, 13658501
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2023

Keywords

Crossrefs

Partial sums of A282211.

Programs

  • Mathematica
    Accumulate[Table[n^3*DivisorSigma[1, n], {n, 1, 33}]] (* Amiram Eldar, Oct 20 2023 *)
  • PARI
    f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
    a(n, s=3, t=1) = sum(k=1, n, k^(s+t)*f(n\k, s));
    
  • Python
    def A364194(n): return sum((k**2*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A364194(n): return ((((s:=isqrt(n))*(s + 1))**3*(2*s+1)*(1-3*s*(s+1))>>1) + sum((q:=n//k)*(q+1)*k**3*(q*(15*k+q*(15*k+12*q+18)+2)-2) for k in range(1,s+1)))//60 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^4 * A000537(floor(n/k)).
a(n) ~ (zeta(2)/5) * n^5. - Amiram Eldar, Oct 20 2023
Showing 1-5 of 5 results.