cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320898 Expansion of e.g.f. exp(theta_3(x) - 1), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 4, 8, 64, 512, 2944, 13568, 134656, 2371328, 29676544, 268141568, 2560761856, 53154824192, 991944441856, 13085180592128, 187309143556096, 4400237083492352, 105779411022905344, 1939709049732595712, 37680665654471950336, 882429584512554893312, 23052947736212625424384
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*(exp(2*add(x^(k^2),k=1..n))),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[EllipticTheta[3, 0, x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[SquaresR[1, k] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp(2*Sum_{k>=1} x^(k^2)).
a(0) = 1; a(n) = Sum_{k=1..n} A000122(k)*k!*binomial(n-1,k-1)*a(n-k).