A320900 Expansion of Sum_{k>=1} x^k/(1 + x^k)^3.
1, -2, 7, -12, 16, -17, 29, -48, 52, -42, 67, -105, 92, -79, 142, -184, 154, -143, 191, -262, 266, -189, 277, -441, 341, -262, 430, -495, 436, -402, 497, -712, 634, -444, 674, -897, 704, -553, 878, -1118, 862, -766, 947, -1189, 1222, -807, 1129, -1753, 1254, -992
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
seq(coeff(series(add(x^k/(1+x^k)^3,k=1..n),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Oct 23 2018
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] Table[Sum[(-1)^(d + 1) d (d + 1)/2, {d, Divisors[n]}], {n, 50}]
-
PARI
a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)/2); \\ Amiram Eldar, Jan 04 2025