A320905 T(n, k) = binomial(2*n - 1 - k, k - 1)*hypergeom([2, 2, 1-k], [1, 1 - 2*k + 2*n], -1), triangle read by rows, T(n, k) for n >= 1 and 1 <= k <= n.
1, 1, 5, 1, 7, 18, 1, 9, 31, 56, 1, 11, 48, 111, 160, 1, 13, 69, 198, 351, 432, 1, 15, 94, 325, 699, 1023, 1120, 1, 17, 123, 500, 1280, 2223, 2815, 2816, 1, 19, 156, 731, 2186, 4458, 6562, 7423, 6912, 1, 21, 193, 1026, 3525, 8330, 14198, 18324, 18943, 16640
Offset: 1
Examples
Triangle starts: [1] 1 [2] 1, 5 [3] 1, 7, 18 [4] 1, 9, 31, 56 [5] 1, 11, 48, 111, 160 [6] 1, 13, 69, 198, 351, 432 [7] 1, 15, 94, 325, 699, 1023, 1120 [8] 1, 17, 123, 500, 1280, 2223, 2815, 2816 [9] 1, 19, 156, 731, 2186, 4458, 6562, 7423, 6912
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Programs
-
Maple
T := (n, k) -> binomial(2*n-1-k,k-1)*hypergeom([2,2,1-k], [1,1-2*k+2*n], -1): seq(seq(simplify(T(n, k)), k=1..n), n=1..10);
-
Mathematica
T[n_, k_] := Sum[Binomial[2*n-k, 2*n-2*k+1+j]*Binomial[j+2, 2],{j, 0, 2*n-k}]; Flatten[Table[T[n, k], {n, 1, 10}, {k, 1, n}]] (* Detlef Meya, Dec 31 2023 *)
-
PARI
T(n, k) = {sum(j=0, 2*n-k, binomial(2*n-k, 2*n - 2*k + 1 + j) * binomial(j+2, 2))} \\ Andrew Howroyd, Dec 31 2023
-
Python
from functools import cache @cache def T(n, k): if k < 1 or n < 1: return 0 if k == 1: return 1 if k == n: return n * (n + 3) * 2**(n - 3) return T(n-1, k) + 2*T(n-1, k-1) - T(n-2, k-2) for n in range(1, 10): print([T(n, k) for k in range(1, n+1)]) # after Detlef Meya, Peter Luschny, Jan 01 2024
Formula
T(n, k) = Sum_{j=0..2*n-k} binomial(2*n-k, 2*n - 2*k + 1 + j)*binomial(j+2, 2). - Detlef Meya, Dec 31 2023