A320925 Heinz numbers of connected multigraphical partitions.
4, 9, 12, 25, 27, 30, 36, 40, 49, 63, 70, 75, 81, 84, 90, 100, 108, 112, 120, 121, 147, 154, 165, 169, 175, 189, 196, 198, 210, 220, 225, 243, 250, 252, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 343, 351, 352, 360, 361, 363, 364, 385, 390, 400, 441
Offset: 1
Keywords
Examples
The sequence of all connected multigraphical partitions begins: (11), (22), (211), (33), (222), (321), (2211), (3111), (44), (422), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111).
Crossrefs
Programs
-
Mathematica
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Select[Range[1000],Select[prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]],Length[csm[#]]==1&]!={}&]
Comments