cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320925 Heinz numbers of connected multigraphical partitions.

Original entry on oeis.org

4, 9, 12, 25, 27, 30, 36, 40, 49, 63, 70, 75, 81, 84, 90, 100, 108, 112, 120, 121, 147, 154, 165, 169, 175, 189, 196, 198, 210, 220, 225, 243, 250, 252, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 343, 351, 352, 360, 361, 363, 364, 385, 390, 400, 441
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected and multigraphical if it comprises the multiset of vertex-degrees of some connected multigraph.

Examples

			The sequence of all connected multigraphical partitions begins: (11), (22), (211), (33), (222), (321), (2211), (3111), (44), (422), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111).
		

Crossrefs

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[1000],Select[prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]],Length[csm[#]]==1&]!={}&]