cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A320924 Heinz numbers of multigraphical partitions.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 27, 30, 36, 40, 48, 49, 63, 64, 70, 75, 81, 84, 90, 100, 108, 112, 120, 121, 144, 147, 154, 160, 165, 169, 175, 189, 192, 196, 198, 210, 220, 225, 243, 250, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 343, 351, 352, 360
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
Also Heinz numbers of integer partitions of even numbers whose greatest part is less than or equal to half the sum of parts, i.e., numbers n whose sum of prime indices A056239(n) is even and at least twice the greatest prime index A061395(n). - Gus Wiseman, May 23 2021

Examples

			The sequence of all multigraphical partitions begins: (), (11), (22), (211), (1111), (33), (222), (321), (2211), (3111), (21111), (44), (422), (111111), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (221111).
From _Gus Wiseman_, May 23 2021: (Start)
The sequence of terms together with their prime indices and a multigraph realizing each begins:
    1:      () | {}
    4:    (11) | {{1,2}}
    9:    (22) | {{1,2},{1,2}}
   12:   (112) | {{1,3},{2,3}}
   16:  (1111) | {{1,2},{3,4}}
   25:    (33) | {{1,2},{1,2},{1,2}}
   27:   (222) | {{1,2},{1,3},{2,3}}
   30:   (123) | {{1,3},{2,3},{2,3}}
   36:  (1122) | {{1,2},{3,4},{3,4}}
   40:  (1113) | {{1,4},{2,4},{3,4}}
   48: (11112) | {{1,2},{3,5},{4,5}}
   49:    (44) | {{1,2},{1,2},{1,2},{1,2}}
   63:   (224) | {{1,3},{1,3},{2,3},{2,3}}
(End)
		

Crossrefs

These partitions are counted by A209816.
The case with odd weights is A322109.
The conjugate case of equality is A340387.
The conjugate version with odd weights allowed is A344291.
The conjugate opposite version is A344292.
The opposite version with odd weights allowed is A344296.
The conjugate version is A344413.
The conjugate opposite version with odd weights allowed is A344414.
The case of equality is A344415.
The opposite version is A344416.
A000070 counts non-multigraphical partitions.
A025065 counts palindromic partitions.
A035363 counts partitions into even parts.
A056239 adds up prime indices, row sums of A112798.
A110618 counts partitions that are the vertex-degrees of some set multipartition with no singletons.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    Select[Range[1000],prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]!={}&]

Formula

Members m of A300061 such that A061395(m) <= A056239(m)/2. - Gus Wiseman, May 23 2021

A320923 Heinz numbers of connected graphical partitions.

Original entry on oeis.org

4, 12, 27, 36, 40, 81, 90, 108, 112, 120, 225, 243, 252, 270, 300, 324, 336, 352, 360, 400, 567, 625, 630, 675, 729, 750, 756, 792, 810, 832, 840, 900, 972, 1000, 1008, 1056, 1080, 1120, 1200, 1323, 1575, 1701, 1750, 1764, 1782, 1872, 1875, 1890, 1980, 2025
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected and graphical if it comprises the multiset of vertex-degrees of some connected simple graph.

Examples

			The sequence of all connected-graphical partitions begins: (11), (211), (222), (2211), (3111), (2222), (3221), (22211), (41111), (32111), (3322), (22222), (42211), (32221), (33211), (222211), (421111), (511111), (322111).
		

Crossrefs

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[1000],Select[prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]],And[UnsameQ@@#,Length[csm[#]]==1]&]!={}&]

A339620 Heinz numbers of non-multigraphical partitions of even numbers.

Original entry on oeis.org

3, 7, 10, 13, 19, 21, 22, 28, 29, 34, 37, 39, 43, 46, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 88, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 155, 156, 159, 163, 166, 171, 172, 173
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

An integer partition is non-multigraphical if it does not comprise the multiset of vertex-degrees of any multigraph (multiset of non-loop edges). Multigraphical partitions are counted by A209816, non-multigraphical partitions by A000070.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime indices of n can be partitioned into strict pairs (a multiset of edges);
(2) n can be factored into squarefree semiprimes;
(3) the unordered prime signature of n is multigraphical.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         53: {16}          94: {1,15}
      7: {4}         55: {3,5}        101: {26}
     10: {1,3}       57: {2,8}        102: {1,2,7}
     13: {6}         61: {18}         107: {28}
     19: {8}         62: {1,11}       111: {2,12}
     21: {2,4}       66: {1,2,5}      113: {30}
     22: {1,5}       71: {20}         115: {3,9}
     28: {1,1,4}     76: {1,1,8}      116: {1,1,10}
     29: {10}        79: {22}         117: {2,2,6}
     34: {1,7}       82: {1,13}       118: {1,17}
     37: {12}        85: {3,7}        129: {2,14}
     39: {2,6}       87: {2,10}       130: {1,3,6}
     43: {14}        88: {1,1,1,5}    131: {32}
     46: {1,9}       89: {24}         133: {4,8}
     52: {1,1,6}     91: {4,6}        134: {1,19}
For example, a complete lists of all loop-multigraphs with degrees (5,2,1) is:
  {{1,1},{1,1},{1,2},{2,3}}
  {{1,1},{1,1},{1,3},{2,2}}
  {{1,1},{1,2},{1,2},{1,3}},
but since none of these is a multigraph (they have loops), the Heinz number 66 belongs to the sequence.
		

Crossrefs

A000070 counts these partitions.
A300061 is a superset.
A320891 has image under A181819 equal to this set of terms.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620 [this sequence]).
- A209816 counts multigraphical partitions (A320924).
- A147878 counts connected multigraphical partitions (A320925).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Select[Subsets[Union[m],{2}],MemberQ[#,m[[1]]]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&&prpts[nrmptn[#]]=={}&]

Formula

Equals A300061 \ A320924.
For all n, both A181821(a(n)) and A304660(a(n)) belong to A320891.

A339659 Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 2, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 5, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 7, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 4, 9, 11, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 2, 11, 15, 17, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Conjecture: The column sums 1, 0, 1, 2, 7, 20, 67, ... are given by A304787.
An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569.

Examples

			Triangle begins:
  1
  0 0 1
  0 0 0 1 1
  0 0 0 1 2 1 1
  0 0 0 0 2 3 2 1 1
  0 0 0 0 1 4 5 3 2 1 1
  0 0 0 0 1 4 7 7 5 3 2 1 1
For example, row n = 5 counts the following partitions:
  3322  22222  222211  2221111  22111111  211111111  1111111111
        32221  322111  3211111  31111111
        33211  331111  4111111
        42211  421111
               511111
		

Crossrefs

A000569 gives the row sums.
A004250 is the central column.
A005408 gives the row lengths.
A008284/A072233 is the version counting all partitions.
A259873 is the left half of the triangle.
A309356 is a universal embedding.
A027187 counts partitions of even length.
A339559 = partitions that cannot be partitioned into distinct strict pairs.
A339560 = partitions that can be partitioned into distinct strict pairs.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A000569 counts graphical partitions (A320922).
- A058696 counts partitions of 2n (A300061).
- A147878 counts connected multigraphical partitions (A320925).
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n (A339618).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).

Programs

  • Mathematica
    prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Subsets[Union[m],{2}]}]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Length[Union[#]]==k&&Select[prpts[#],UnsameQ@@#&]!={}&]],{n,0,5},{k,0,2*n}]

A322109 Heinz numbers of integer partitions that are the vertex-degrees of some set multipartition (multiset of nonempty sets) with no singletons.

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 180, 189, 192, 196, 198, 200, 210
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also Heinz numbers of partitions whose greatest part is less than or equal to half the sum of parts, i.e., numbers n whose sum of prime indices A056239(n) is at least twice the greatest prime index A061395(n). - Gus Wiseman, May 23 2021

Examples

			Each term paired with its Heinz partition and a realizing set multipartition with no singletons:
   1:      (): {}
   4:    (11): {{1,2}}
   8:   (111): {{1,2,3}}
   9:    (22): {{1,2},{1,2}}
  12:   (211): {{1,2},{1,3}}
  16:  (1111): {{1,2,3,4}}
  18:   (221): {{1,2},{1,2,3}}
  24:  (2111): {{1,2},{1,3,4}}
  25:    (33): {{1,2},{1,2},{1,2}}
  27:   (222): {{1,2,3},{1,2,3}}
  30:   (321): {{1,2},{1,2},{1,3}}
  32: (11111): {{1,2,3,4,5}}
  36:  (2211): {{1,2},{1,2,3,4}}
  40:  (3111): {{1,2},{1,3},{1,4}}
		

Crossrefs

These partitions are counted by A110618.
The even-weight version is A320924.
The conjugate case of equality is A340387.
The conjugate version is A344291.
The opposite conjugate version is A344296.
The opposite version is A344414.
The case of equality is A344415.
The opposite even-weight version is A344416.
A000070 counts non-multigraphical partitions.
A025065 counts palindromic partitions.
A035363 counts partitions into even parts.
A056239 adds up prime indices, row sums of A112798.
A058696 counts partitions of even numbers, ranked by A300061.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sqnopfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqnopfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],!PrimeQ[#]&&SquareFreeQ[#]&]}]]
    Select[Range[100],Length[sqnopfacs[Times@@Prime/@nrmptn[#]]]>0&]

Formula

A061395(a(n)) <= A056239(a(n))/2.

A322136 Numbers whose number of prime factors counted with multiplicity exceeds half their sum of prime indices by at least 1.

Original entry on oeis.org

4, 8, 12, 16, 24, 32, 36, 40, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 192, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 432, 448, 480, 512, 576, 640, 648, 672, 704, 720, 768, 800, 832, 864, 896, 960, 972
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence lists all Heinz numbers of integer partitions where the number of parts is at least 1 plus half the sum of parts.
Also Heinz numbers of integer partitions that are the vertex-degrees of some hypertree. We allow no singletons in a hypertree, so 2 is not included.

Examples

			The sequence of partitions with Heinz numbers in the sequence begins: (11), (111), (211), (1111), (2111), (11111), (2211), (3111), (21111), (111111), (22111), (31111), (211111), (22211), (41111), (32111), (1111111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]>=(Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]+2)/2&]

A321177 Heinz numbers of integer partitions that are the vertex-degrees of some set system with no singletons.

Original entry on oeis.org

1, 4, 8, 12, 16, 18, 24, 27, 32, 36, 40
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Each term paired with its Heinz partition and a realizing set system:
  1:       (): {}
  4:     (11): {{1,2}}
  8:    (111): {{1,2,3}}
  12:   (211): {{1,2},{1,3}}
  16:  (1111): {{1,2,3,4}}
  18:   (221): {{1,2},{1,2,3}}
  24:  (2111): {{1,2},{1,3,4}}
  27:   (222): {{1,2},{1,3},{2,3}}
  32: (11111): {{1,2,3,4,5}}
  36:  (2211): {{1,2},{1,2,3,4}}
  40:  (3111): {{1,2},{1,3},{1,4}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[20],!hyp[nrmptn[#]]=={}&]
Showing 1-7 of 7 results.