cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A320924 Heinz numbers of multigraphical partitions.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 27, 30, 36, 40, 48, 49, 63, 64, 70, 75, 81, 84, 90, 100, 108, 112, 120, 121, 144, 147, 154, 160, 165, 169, 175, 189, 192, 196, 198, 210, 220, 225, 243, 250, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 343, 351, 352, 360
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
Also Heinz numbers of integer partitions of even numbers whose greatest part is less than or equal to half the sum of parts, i.e., numbers n whose sum of prime indices A056239(n) is even and at least twice the greatest prime index A061395(n). - Gus Wiseman, May 23 2021

Examples

			The sequence of all multigraphical partitions begins: (), (11), (22), (211), (1111), (33), (222), (321), (2211), (3111), (21111), (44), (422), (111111), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (221111).
From _Gus Wiseman_, May 23 2021: (Start)
The sequence of terms together with their prime indices and a multigraph realizing each begins:
    1:      () | {}
    4:    (11) | {{1,2}}
    9:    (22) | {{1,2},{1,2}}
   12:   (112) | {{1,3},{2,3}}
   16:  (1111) | {{1,2},{3,4}}
   25:    (33) | {{1,2},{1,2},{1,2}}
   27:   (222) | {{1,2},{1,3},{2,3}}
   30:   (123) | {{1,3},{2,3},{2,3}}
   36:  (1122) | {{1,2},{3,4},{3,4}}
   40:  (1113) | {{1,4},{2,4},{3,4}}
   48: (11112) | {{1,2},{3,5},{4,5}}
   49:    (44) | {{1,2},{1,2},{1,2},{1,2}}
   63:   (224) | {{1,3},{1,3},{2,3},{2,3}}
(End)
		

Crossrefs

These partitions are counted by A209816.
The case with odd weights is A322109.
The conjugate case of equality is A340387.
The conjugate version with odd weights allowed is A344291.
The conjugate opposite version is A344292.
The opposite version with odd weights allowed is A344296.
The conjugate version is A344413.
The conjugate opposite version with odd weights allowed is A344414.
The case of equality is A344415.
The opposite version is A344416.
A000070 counts non-multigraphical partitions.
A025065 counts palindromic partitions.
A035363 counts partitions into even parts.
A056239 adds up prime indices, row sums of A112798.
A110618 counts partitions that are the vertex-degrees of some set multipartition with no singletons.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    Select[Range[1000],prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]!={}&]

Formula

Members m of A300061 such that A061395(m) <= A056239(m)/2. - Gus Wiseman, May 23 2021

A004250 Number of partitions of n into 3 or more parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 11, 17, 25, 36, 50, 70, 94, 127, 168, 222, 288, 375, 480, 616, 781, 990, 1243, 1562, 1945, 2422, 2996, 3703, 4550, 5588, 6826, 8332, 10126, 12292, 14865, 17958, 21618, 25995, 31165, 37317, 44562
Offset: 1

Views

Author

Keywords

Comments

Number of (n+1)-vertex spider graphs: trees with n+1 vertices and exactly 1 vertex of degree at least 3 (i.e. branching vertex). There is a trivial bijection with the objects described in the definition. - Emeric Deutsch, Feb 22 2014
Also the number of graphical partitions of 2n into n parts. - Gus Wiseman, Jan 08 2021

Examples

			a(6)=7 because there are three partitions of n=6 with i=3 parts: [4, 1, 1], [3, 2, 1], [2, 2, 2] and two partitions with i=4 parts: [3, 1, 1, 1], [2, 2, 1, 1] and one partition with i=5 parts: [2, 1, 1, 1, 1] and one partition with i=6 parts: [1, 1, 1, 1, 1, 1].
From _Gus Wiseman_, Jan 18 2021: (Start)
The a(3) = 1 through a(7) = 11 graphical partitions of 2n into n parts:
  (222)  (2222)  (22222)  (222222)  (2222222)
         (3221)  (32221)  (322221)  (3222221)
                 (33211)  (332211)  (3322211)
                 (42211)  (333111)  (3332111)
                          (422211)  (4222211)
                          (432111)  (4322111)
                          (522111)  (4331111)
                                    (4421111)
                                    (5222111)
                                    (5321111)
                                    (6221111)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).

Crossrefs

Rightmost column of A259873.
Central column of A339659.
A000041 counts partitions of 2n into n parts, ranked by A340387.
A000569 counts graphical partitions, ranked by A320922.
A008284 counts partitions by sum and length.
A027187 counts partitions of even length.
A309356 ranks simple covering graphs.
The following count vertex-degree partitions and give their Heinz numbers:
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A339617 counts non-graphical partitions of 2n (A339618).
- A339656 counts loop-graphical partitions (A339658).
Partial sums of A117995.

Programs

  • Maple
    with(combinat);
    for i from 1 to 15 do pik(i,3) od;
    pik:= proc(n::integer, k::integer)
    # Thomas Wieder, Jan 30 2007
    local i, Liste, Result;
    if k > n or n < 0 or k < 1 then
    return fail
    end if;
    Result := 0;
    for i from k to n do
    Liste:= PartitionList(n,i);
    #print(Liste);
    Result := Result + nops(Liste);
    end do;
    return Result;
    end proc;
    PartitionList := proc (n, k)
    # Authors: Herbert S. Wilf and Joanna Nordlicht. Source: Lecture Notes
    # "East Side West Side,..." University of Pennsylvania, USA, 2002.
    # Available at: http://www.cis.upenn.edu/~wilf/lecnotes.html
    # Calculates the partition of n into k parts.
    # E.g. PartitionList(5,2) --> [[4, 1], [3, 2]].
    local East, West;
    if n < 1 or k < 1 or n < k then
    RETURN([])
    elif n = 1 then
    RETURN([[1]])
    else if n < 2 or k < 2 or n < k then
    West := []
    else
    West := map(proc (x) options operator, arrow;
    [op(x), 1] end proc,PartitionList(n-1,k-1)) end if;
    if k <= n-k then
    East := map(proc (y) options operator, arrow;
    map(proc (x) options operator, arrow; x+1 end proc,y) end proc,PartitionList(n-k,k))
    else East := [] end if;
    RETURN([op(West), op(East)])
    end if;
    end proc;
    #  Thomas Wieder, Feb 01 2007
    ZL :=[S, {S = Set(Cycle(Z),3 <= card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=1..41); # Zerinvary Lajos, Mar 25 2008
    B:=[S,{S = Set(Sequence(Z,1 <= card),card >=3)},unlabelled]: seq(combstruct[count](B, size=n), n=1..41); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    Length /@ Table[Select[Partitions[n], Length[#] > 2 &], {n, 20}] (* Eric W. Weisstein, May 16 2007 *)
    Table[Count[Length /@ Partitions[n], ?(# > 2 &)], {n, 20}] (* _Eric W. Weisstein, May 16 2017 *)
    Table[PartitionsP[n] - Floor[n/2] - 1, {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
    Length /@ Table[IntegerPartitions[n, {3, n}], {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
  • PARI
    a(n) = numbpart(n) - (n+2)\2; /* Joerg Arndt, Apr 03 2013 */

Formula

G.f.: Sum_{n>=0} (q^n / Product_{k=1..n+3} (1 - q^k)). - N. J. A. Sloane
a(n) = A000041(n) - floor((n+2)/2) = A000041(n)-A004526(n+2) = A058984(n)-1. - Vladeta Jovovic, Jun 18 2003
Let P(n,i) denote the number of partitions of n into i parts. Then a(n) = Sum_{i=3..n} P(n,i). - Thomas Wieder, Feb 01 2007
a(n) = A259873(n,n). - Gus Wiseman, Jan 08 2021

Extensions

Definition corrected by Thomas Wieder, Feb 01 2007 and by Eric W. Weisstein, May 16 2007

A320922 Heinz numbers of graphical partitions.

Original entry on oeis.org

1, 4, 12, 16, 27, 36, 40, 48, 64, 81, 90, 108, 112, 120, 144, 160, 192, 225, 243, 252, 256, 270, 300, 324, 336, 352, 360, 400, 432, 448, 480, 567, 576, 625, 630, 640, 675, 729, 750, 756, 768, 792, 810, 832, 840, 900, 972, 1000, 1008, 1024, 1056, 1080, 1120
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is graphical if it comprises the vertex-degrees of some simple graph.

Examples

			The sequence of all graphical partitions begins: (), (11), (211), (1111), (222), (2211), (3111), (21111), (111111), (2222), (3221), (22211), (41111), (32111), (221111), (311111), (2111111), (3322), (22222), (42211).
		

Crossrefs

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    Select[Range[1000],Select[prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]],UnsameQ@@#&]!={}&]

A004251 Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 102, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042620, 45967479, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, 2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338, 7898574056034636, 30873421455729728
Offset: 0

Views

Author

Keywords

Comments

In other words, a(n) is the number of graphic sequences of length n, where a graphic sequence is a sequence of numbers which can be the degree sequence of some graph.
In the article by A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, "Parallel enumeration of degree sequences of simple graphs II", in Table 4 on page 260 the values a(30) = 7898574056034638 and a(31) = 30873429530206738 are incorrect due to the incorrect Gz(30) = 5876236938019300 and Gz(31) = 22974847474172100. - Wang Kai, Jun 05 2016

Examples

			For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
  ()  (0)  (0,0)  (0,0,0)  (0,0,0,0)
           (1,1)  (0,1,1)  (0,0,1,1)
                  (1,1,2)  (0,1,1,2)
                  (2,2,2)  (0,2,2,2)
                           (1,1,1,1)
                           (1,1,1,3)
                           (1,1,2,2)
                           (1,2,2,3)
                           (2,2,2,2)
                           (2,2,3,3)
                           (3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
		

References

  • R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).

Crossrefs

Counting the positive partitions by sum gives A000569, ranked by A320922.
The version with half-loops is A029889, with covering case A339843.
The covering case (no zeros) is A095268.
Covering simple graphs are ranked by A309356 and A320458.
Non-graphical partitions are counted by A339617 and ranked by A339618.
The version with loops is A339844, with covering case A339845.
A006125 counts simple graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320921 counts connected graphical partitions.
A322353 counts factorizations into distinct semiprimes.
A339659 counts graphical partitions of 2n into k parts.
A339661 counts factorizations into distinct squarefree semiprimes.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

G.f. = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 102*x^6 + 342*x^7 + 1213*x^8 + ...
a(n) ~ c * 4^n / n^(3/4) for some constant c > 0. Computational estimates suggest c ≈ 0.099094. - Tom Johnston, Jan 18 2023

Extensions

More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(20)-a(23) from Nathann Cohen, Jul 09 2011
a(24)-a(29) from Antal Iványi, Nov 15 2011
a(30) and a(31) corrected by Wang Kai, Jun 05 2016

A339561 Products of distinct squarefree semiprimes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Dec 13 2020

Keywords

Comments

First differs from A320911 in lacking 36.
A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct strict pairs (a set of edges);
(2) n can be factored into distinct squarefree semiprimes;
(3) the prime signature of n is graphical.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}        55: {3,5}         91: {4,6}
      6: {1,2}     57: {2,8}         93: {2,11}
     10: {1,3}     58: {1,10}        94: {1,15}
     14: {1,4}     60: {1,1,2,3}     95: {3,8}
     15: {2,3}     62: {1,11}       106: {1,16}
     21: {2,4}     65: {3,6}        111: {2,12}
     22: {1,5}     69: {2,9}        115: {3,9}
     26: {1,6}     74: {1,12}       118: {1,17}
     33: {2,5}     77: {4,5}        119: {4,7}
     34: {1,7}     82: {1,13}       122: {1,18}
     35: {3,4}     84: {1,1,2,4}    123: {2,13}
     38: {1,8}     85: {3,7}        126: {1,2,2,4}
     39: {2,6}     86: {1,14}       129: {2,14}
     46: {1,9}     87: {2,10}       132: {1,1,2,5}
     51: {2,7}     90: {1,2,2,3}    133: {4,8}
For example, the number 1260 can be factored into distinct squarefree semiprimes in two ways, (6*10*21) or (6*14*15), so 1260 is in the sequence. The number 69300 can be factored into distinct squarefree semiprimes in seven ways:
  (6*10*15*77)
  (6*10*21*55)
  (6*10*33*35)
  (6*14*15*55)
  (6*15*22*35)
  (10*14*15*33)
  (10*15*21*22),
so 69300 is in the sequence. A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24), all of which contain at least one number that is not a squarefree semiprime, so 24 is not in the sequence.
		

Crossrefs

A309356 is a kind of universal embedding.
A320894 is the complement in A028260.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A339560 counts the partitions with these Heinz numbers.
A339661 has nonzero terms at these positions.
A001358 lists semiprimes, with squarefree case A006881.
A005117 lists squarefree numbers.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561 [this sequence]).

Programs

  • Mathematica
    sqs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqs[n/d],Min@@#>d&]],{d,Select[Divisors[n],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqs[#]!={}&]

Formula

A320921 Number of connected graphical partitions of 2n.

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 19, 35, 60
Offset: 0

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

An integer partition is connected and graphical if it comprises the multiset of vertex-degrees of some connected simple graph.

Examples

			The a(1) = 1 through a(6) = 19 connected graphical partitions:
  (11)  (211)  (222)   (2222)   (3322)    (3333)
               (2211)  (3221)   (22222)   (33222)
               (3111)  (22211)  (32221)   (33321)
                       (32111)  (33211)   (42222)
                       (41111)  (42211)   (43221)
                                (222211)  (222222)
                                (322111)  (322221)
                                (331111)  (332211)
                                (421111)  (333111)
                                (511111)  (422211)
                                          (432111)
                                          (522111)
                                          (2222211)
                                          (3222111)
                                          (3321111)
                                          (4221111)
                                          (4311111)
                                          (5211111)
                                          (6111111)
		

Crossrefs

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[strnorm[2*n],Select[prptns[#],And[UnsameQ@@#,Length[csm[#]]==1]&]!={}&]],{n,5}]

A338914 Number of integer partitions of n of even length whose greatest multiplicity is at most half their length.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 23, 29, 39, 53, 69, 90, 118, 150, 195, 249, 315, 398, 506, 629, 789, 982, 1219, 1504, 1860, 2277, 2798, 3413, 4161, 5051, 6137, 7406, 8948, 10765, 12943, 15503, 18571, 22153, 26432, 31432, 37352, 44268, 52444, 61944, 73141
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2020

Keywords

Comments

These are also integer partitions that can be partitioned into not necessarily distinct edges (pairs of distinct parts). For example, (3,3,2,2) can be partitioned as {{2,3},{2,3}}, so is counted under a(10), but (4,2,2,2) and (4,2,1,1,1,1) cannot be partitioned into edges. The multiplicities of such a partition form a multigraphical partition (A209816, A320924).

Examples

			The a(3) = 1 through a(10) = 11 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)    (54)      (64)
              (41)  (51)    (52)    (62)    (63)      (73)
                    (2211)  (61)    (71)    (72)      (82)
                            (3211)  (3221)  (81)      (91)
                                    (3311)  (3321)    (3322)
                                    (4211)  (4221)    (4321)
                                            (4311)    (4411)
                                            (5211)    (5221)
                                            (222111)  (5311)
                                                      (6211)
                                                      (322111)
		

Crossrefs

A096373 counts the complement in even-length partitions.
A320911 gives the Heinz numbers of these partitions.
A339560 is the strict case.
A339562 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320656 counts factorizations into squarefree semiprimes.
A320921 counts connected graphical partitions, ranked by A320923.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Max@@Length/@Split[#]<=Length[#]/2&]],{n,0,30}]

Formula

A027187(n) = a(n) + A096373(n).

A339618 Heinz numbers of non-graphical integer partitions of even numbers.

Original entry on oeis.org

3, 7, 9, 10, 13, 19, 21, 22, 25, 28, 29, 30, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 63, 66, 70, 71, 75, 76, 79, 82, 84, 85, 87, 88, 89, 91, 94, 100, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 147
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime indices of n can be partitioned into distinct strict pairs (a set of edges);
(2) n can be factored into distinct squarefree semiprimes;
(3) the unordered prime signature of n is graphical.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         43: {14}        79: {22}
      7: {4}         46: {1,9}       82: {1,13}
      9: {2,2}       49: {4,4}       84: {1,1,2,4}
     10: {1,3}       52: {1,1,6}     85: {3,7}
     13: {6}         53: {16}        87: {2,10}
     19: {8}         55: {3,5}       88: {1,1,1,5}
     21: {2,4}       57: {2,8}       89: {24}
     22: {1,5}       61: {18}        91: {4,6}
     25: {3,3}       62: {1,11}      94: {1,15}
     28: {1,1,4}     63: {2,2,4}    100: {1,1,3,3}
     29: {10}        66: {1,2,5}    101: {26}
     30: {1,2,3}     70: {1,3,4}    102: {1,2,7}
     34: {1,7}       71: {20}       107: {28}
     37: {12}        75: {2,3,3}    111: {2,12}
     39: {2,6}       76: {1,1,8}    113: {30}
For example, there are three possible multigraphs with degrees (1,1,3,3):
  {{1,2},{1,2},{1,2},{3,4}}
  {{1,2},{1,2},{1,3},{2,4}}
  {{1,2},{1,2},{1,4},{2,3}}.
Since none of these is a graph, the Heinz number 100 belongs to the sequence.
		

Crossrefs

A181819 applied to A320894 gives this sequence.
A300061 is a superset.
A339617 counts these partitions.
A320922 ranks the complement, counted by A000569.
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618 [this sequence]).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&&strs[Times@@Prime/@nrmptn[#]]=={}&]

Formula

Equals A300061 \ A320922.
For all n, A181821(a(n)) and A304660(a(n)) belong to A320894.

A147878 The number of degree sequences with degree sum 2n representable by a connected graph (with multiple edges allowed).

Original entry on oeis.org

1, 2, 5, 11, 23, 46, 86, 156, 273, 463, 766, 1241, 1969, 3073, 4723, 7157, 10711, 15850, 23206, 33654, 48373, 68955, 97544, 137002, 191125, 264955, 365127, 500349, 682018, 924982, 1248502, 1677530, 2244229, 2989952, 3967732, 5245354, 6909211
Offset: 1

Views

Author

James Sellers, Nov 16 2008

Keywords

Examples

			From _Gus Wiseman_, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 23 connected multigraphical partitions:
  (11)  (22)   (33)    (44)     (55)
        (211)  (222)   (332)    (433)
               (321)   (422)    (442)
               (2211)  (431)    (532)
               (3111)  (2222)   (541)
                       (3221)   (3322)
                       (3311)   (3331)
                       (4211)   (4222)
                       (22211)  (4321)
                       (32111)  (4411)
                       (41111)  (5221)
                                (5311)
                                (22222)
                                (32221)
                                (33211)
                                (42211)
                                (43111)
                                (52111)
                                (222211)
                                (322111)
                                (331111)
                                (421111)
                                (511111)
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): seq(numbpart(2*m) - numbpart(m - 1) - 2*add(numbpart(j), j = 0 .. m-2), m=1..60);
  • PARI
    a(n) = numbpart(2*n) - numbpart(n-1) - 2*sum(j=0, n-2, numbpart(j)); \\ Michel Marcus, Nov 04 2016

Formula

a(n) = p(2n) - p(n-1) - 2*Sum_{j=0..n-2} p(j).
a(n) = A000041(2*n) - 2*A000070(n) + 2*A000041(n) + A000041(n-1). - Vaclav Kotesovec, Nov 05 2016
a(n) ~ exp(2*Pi*sqrt(n/3))/(8*sqrt(3)*n) * (1 - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) /sqrt(n)). - Vaclav Kotesovec, Nov 05 2016

Extensions

Offset corrected by Michel Marcus, Nov 04 2016

A339659 Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 2, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 5, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 7, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 4, 9, 11, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 2, 11, 15, 17, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Conjecture: The column sums 1, 0, 1, 2, 7, 20, 67, ... are given by A304787.
An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569.

Examples

			Triangle begins:
  1
  0 0 1
  0 0 0 1 1
  0 0 0 1 2 1 1
  0 0 0 0 2 3 2 1 1
  0 0 0 0 1 4 5 3 2 1 1
  0 0 0 0 1 4 7 7 5 3 2 1 1
For example, row n = 5 counts the following partitions:
  3322  22222  222211  2221111  22111111  211111111  1111111111
        32221  322111  3211111  31111111
        33211  331111  4111111
        42211  421111
               511111
		

Crossrefs

A000569 gives the row sums.
A004250 is the central column.
A005408 gives the row lengths.
A008284/A072233 is the version counting all partitions.
A259873 is the left half of the triangle.
A309356 is a universal embedding.
A027187 counts partitions of even length.
A339559 = partitions that cannot be partitioned into distinct strict pairs.
A339560 = partitions that can be partitioned into distinct strict pairs.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A000569 counts graphical partitions (A320922).
- A058696 counts partitions of 2n (A300061).
- A147878 counts connected multigraphical partitions (A320925).
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n (A339618).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).

Programs

  • Mathematica
    prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Subsets[Union[m],{2}]}]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Length[Union[#]]==k&&Select[prpts[#],UnsameQ@@#&]!={}&]],{n,0,5},{k,0,2*n}]
Showing 1-10 of 19 results. Next