cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320931 a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 4, 12, 24, 80, 292, 966, 3876, 15554, 61608, 254612, 1065676, 4471672, 19074968, 82043172, 354365492, 1543432514, 6760146292, 29732837780, 131440491584, 583419967664, 2598585783488, 11615321544700, 52079369904384, 234157152231726, 1055628140278948, 4770576024205060
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n*(n+1)/2.

Examples

			Solutions (a_1, a_2, ... , a_4) to the equation a_1^2 + 2*a_2^2 + ... + 4*a_4^2 = 10.
-------------------------------------------------------------------------------------
( 1,  1,  1,  1), ( 1,  1,  1, -1),
( 1,  1, -1,  1), ( 1,  1, -1, -1),
( 1, -1,  1,  1), ( 1, -1,  1, -1),
( 1, -1, -1,  1), ( 1, -1, -1, -1),
(-1,  1,  1,  1), (-1,  1,  1, -1),
(-1,  1, -1,  1), (-1,  1, -1, -1),
(-1, -1,  1,  1), (-1, -1,  1, -1),
(-1, -1, -1,  1), (-1, -1, -1, -1),
( 2,  1,  0,  1), ( 2,  1,  0, -1),
( 2, -1,  0,  1), ( 2, -1,  0, -1),
(-2,  1,  0,  1), (-2,  1,  0, -1),
(-2, -1,  0,  1), (-2, -1,  0, -1).
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; Table[SeriesCoefficient[Product[EllipticTheta[3, 0, x^k], {k, 1, n}], {x, 0, n*(n+1)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)

Formula

a(n) ~ c * d^n / n^(7/4), where d = 4.818071572655... and c = 0.5869031198... - Vaclav Kotesovec, Oct 29 2018