A320931 a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} theta_3(q^k), where theta_3() is the Jacobi theta function.
1, 2, 4, 12, 24, 80, 292, 966, 3876, 15554, 61608, 254612, 1065676, 4471672, 19074968, 82043172, 354365492, 1543432514, 6760146292, 29732837780, 131440491584, 583419967664, 2598585783488, 11615321544700, 52079369904384, 234157152231726, 1055628140278948, 4770576024205060
Offset: 0
Keywords
Examples
Solutions (a_1, a_2, ... , a_4) to the equation a_1^2 + 2*a_2^2 + ... + 4*a_4^2 = 10. ------------------------------------------------------------------------------------- ( 1, 1, 1, 1), ( 1, 1, 1, -1), ( 1, 1, -1, 1), ( 1, 1, -1, -1), ( 1, -1, 1, 1), ( 1, -1, 1, -1), ( 1, -1, -1, 1), ( 1, -1, -1, -1), (-1, 1, 1, 1), (-1, 1, 1, -1), (-1, 1, -1, 1), (-1, 1, -1, -1), (-1, -1, 1, 1), (-1, -1, 1, -1), (-1, -1, -1, 1), (-1, -1, -1, -1), ( 2, 1, 0, 1), ( 2, 1, 0, -1), ( 2, -1, 0, 1), ( 2, -1, 0, -1), (-2, 1, 0, 1), (-2, 1, 0, -1), (-2, -1, 0, 1), (-2, -1, 0, -1).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..300 (first 101 terms from Seiichi Manyama)
Programs
-
Mathematica
nmax = 25; Table[SeriesCoefficient[Product[EllipticTheta[3, 0, x^k], {k, 1, n}], {x, 0, n*(n+1)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
Formula
a(n) ~ c * d^n / n^(7/4), where d = 4.818071572655... and c = 0.5869031198... - Vaclav Kotesovec, Oct 29 2018
Comments