A320935 Number of chiral pairs of color patterns (set partitions) for a row of length n using 5 or fewer colors (subsets).
0, 0, 1, 4, 20, 86, 400, 1852, 8868, 42892, 210346, 1038034, 5150110, 25623486, 127740880, 637539592, 3184224728, 15910524632, 79520923966, 397508610454, 1987255480650, 9935410066186, 49674450471460, 248364429410332, 1241798688445588, 6208922948527572, 31044403310614786
Offset: 1
Examples
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-34,-16,247,-317,-200,610,-300).
Programs
-
Mathematica
LinearRecurrence[{11, -34, -16, 247, -317, -200, 610, -300}, {0, 0, 1, 4, 20, 86, 400, 1852}, 40] (* or *) Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *) k=5; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,40}]
Formula
a(n) = Sum_{j=1..k} (S2(n,j) - Ach(n,j)) / 2, where k=5 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
G.f.: x^3*(1 - 7*x + 10*x^2 + 18*x^3 - 49*x^4 + 25*x^5)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 5*x)*(1 - 5*x^2)*(1 - 2*x^2)). - Bruno Berselli, Oct 31 2018
Comments