A320937 Number of chiral pairs of color patterns (set partitions) for a row of length n.
0, 0, 1, 4, 20, 86, 409, 1988, 10404, 57488, 338180, 2103378, 13814202, 95423766, 691415451, 5239857008, 41431883216, 341036489096, 2916365967707, 25862060748614, 237434856965694, 2253357681164288, 22076002386446896, 222979432604192844, 2319295160051570620
Offset: 1
Examples
For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *) Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,n}]/2,{n,40}]
-
PARI
\\ Ach is A304972 as square matrix. Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M} seq(n)={my(A=Ach(n)); vector(n, n, sum(k=1, n, stirling(n,k,2) - A[n,k])/2)} \\ Andrew Howroyd, Sep 18 2019
Comments