cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320969 Semiprimes with distinct digits.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 25, 26, 34, 35, 38, 39, 46, 49, 51, 57, 58, 62, 65, 69, 74, 82, 85, 86, 87, 91, 93, 94, 95, 106, 123, 129, 134, 142, 143, 145, 146, 158, 159, 169, 178, 183, 185, 187, 194, 201, 203, 205, 206, 209, 213, 214, 215, 217, 218, 219, 235, 237, 247, 249, 253, 254, 259, 265, 267, 274
Offset: 1

Views

Author

Zak Seidov, Oct 25 2018

Keywords

Comments

This sequence has 864939 terms, the last being 987654301.
Number of n-digit terms, for n = 1..9: 3, 27, 183, 1140, 6240, 27666, 99543, 277146, 452991. There are no semiprimes with distinct digits for n > 9.
Indeed, a 10-digit pandigital number is divisible by 9=3*3, so it can't be semiprime, and there are not more than 10 distinct digits in base 10. - M. F. Hasler, Oct 29 2018

Examples

			a(n*10^5) for n= 1..8: 6710843 = 173*38791, 30541627 = 881*34667, 62148035 = 5*12429607, 95068217 = 41*2318737, 280196547 = 3*93398849, 476891503 = 11*43353773, 654037129 = 79*8278951, 861247059 = 3*287082353.
		

Crossrefs

Intersection of A001358 and A010784.
Cf. A029743.

Programs

  • Mathematica
    Select[Range[300],PrimeOmega[#]==2&&Max[DigitCount[#]]==1&] (* Harvey P. Dale, Jan 29 2022 *)
  • PARI
    is(n)=bigomega(n)==2&& #Set(n=digits(n))=#n \\ M. F. Hasler, Oct 29 2018
    
  • PARI
    row(n,L=List())=forvec(d=vector(n,i,[0,9]),for(i=!d[1]*(n-1)!,n!-1,bigomega(fromdigits(vecextract(d,numtoperm(n,i))))==2||next;  listput(L,fromdigits(vecextract(d,numtoperm(n,i))))),2);Set(L) \\ Returns the n-digit terms. - M. F. Hasler, Oct 29 2018

Extensions

More terms from M. F. Hasler, Oct 29 2018