A320998 Number of pseudo-square convex polyominoes with semiperimeter n.
1, 12, 44, 142, 399, 1044, 2571, 6168, 14357, 32786, 73746, 163872, 360462, 786468, 1703949, 3670040, 7864353, 16777260, 35651579, 75497508, 159383591, 335544350, 704643087, 1476395064, 3087007733, 6442451004, 13421772816, 27917287460, 57982058547, 120259084318
Offset: 6
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 6..1000
- Srecko Brlek, Andrea Frosini, Simone Rinaldi, and Laurent Vuillon, Tilings by translation: enumeration by a rational language approach, The Electronic Journal of Combinatorics, vol. 13, (2006). See Section 4.2.
Programs
-
Maple
seq(coeff(series(2*x^6/((1-x)^2*(1-2*x)^2)-add(k*x^(3*(k+1))/(1-x^(k+1))^2,k=1..ceil(n/3)),x,n+1), x, n), n = 6 .. 35); # Muniru A Asiru, Oct 31 2018
-
Mathematica
seq[n_] := 2*x^6/((1 - x)^2*(1 - 2*x)^2) - Sum[k*x^(3*(k + 1))/(1 - x^(k + 1))^2 + O[x]^(6 + n), {k, 1, Ceiling[n/3]}] // CoefficientList[#, x]& // Drop[#, 6]&; seq[30] (* Jean-François Alcover, Sep 07 2019, from PARI *)
-
PARI
seq(n)={Vec(2*x^6/((1-x)^2*(1-2*x)^2) - sum(k=1, ceil(n/3), k*x^(3*(k+1))/(1-x^(k+1))^2 + O(x^(6+n))))} \\ Andrew Howroyd, Oct 31 2018
Formula
Extensions
Terms a(16) and beyond from Andrew Howroyd, Oct 31 2018
Comments