cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320998 Number of pseudo-square convex polyominoes with semiperimeter n.

Original entry on oeis.org

1, 12, 44, 142, 399, 1044, 2571, 6168, 14357, 32786, 73746, 163872, 360462, 786468, 1703949, 3670040, 7864353, 16777260, 35651579, 75497508, 159383591, 335544350, 704643087, 1476395064, 3087007733, 6442451004, 13421772816, 27917287460, 57982058547, 120259084318
Offset: 6

Views

Author

N. J. A. Sloane, Oct 30 2018

Keywords

Comments

The offset is not specified but appears to be 6.

Crossrefs

Programs

  • Maple
    seq(coeff(series(2*x^6/((1-x)^2*(1-2*x)^2)-add(k*x^(3*(k+1))/(1-x^(k+1))^2,k=1..ceil(n/3)),x,n+1), x, n), n = 6 .. 35); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    seq[n_] := 2*x^6/((1 - x)^2*(1 - 2*x)^2) - Sum[k*x^(3*(k + 1))/(1 - x^(k + 1))^2 + O[x]^(6 + n), {k, 1, Ceiling[n/3]}] // CoefficientList[#, x]& // Drop[#, 6]&;
    seq[30] (* Jean-François Alcover, Sep 07 2019, from PARI *)
  • PARI
    seq(n)={Vec(2*x^6/((1-x)^2*(1-2*x)^2) - sum(k=1, ceil(n/3), k*x^(3*(k+1))/(1-x^(k+1))^2 + O(x^(6+n))))} \\ Andrew Howroyd, Oct 31 2018

Formula

a(n) = 2*A045618(6+n) - A320999(n). - Andrew Howroyd, Oct 31 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 31 2018