A320999 Related to the enumeration of pseudo-square convex polyominoes by semiperimeter.
1, 0, 2, 2, 3, 0, 11, 0, 5, 10, 12, 0, 20, 0, 25, 16, 9, 0, 51, 12, 11, 22, 39, 0, 69, 0, 46, 28, 15, 38, 104, 0, 17, 34, 105, 0, 105, 0, 67, 92, 21, 0, 175, 30, 82, 46, 81, 0, 141, 66, 159, 52, 27, 0, 299, 0, 29, 140, 144, 80, 177, 0, 109, 64, 213, 0, 374, 0, 35
Offset: 6
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 6..1000
- Srecko Brlek, Andrea Frosini, Simone Rinaldi, and Laurent Vuillon, Tilings by translation: enumeration by a rational language approach, The Electronic Journal of Combinatorics, vol. 13, (2006). See Section 4.2.
Crossrefs
Cf. A320998.
Programs
-
Maple
seq(coeff(series(add(k*x^(3*(k+1))/(1-x^(k+1))^2,k=1..n),x,n+1), x, n), n = 6 .. 75); # Muniru A Asiru, Oct 31 2018
-
Mathematica
kmax = 80; Sum[k*x^(3*(k+1))/(1-x^(k+1))^2, {k, 1, kmax}] + O[x]^kmax // CoefficientList[#, x]& // Drop[#, 6]& (* Jean-François Alcover, Sep 10 2019 *)
-
PARI
seq(n)={Vec(sum(k=1, ceil(n/3), k*x^(3*(k+1))/(1-x^(k+1))^2 + O(x^(6+n))))} \\ Andrew Howroyd, Oct 31 2018
Formula
G.f.: Sum_{k>=1} k*x^(3*(k+1))/(1-x^(k+1))^2. - Andrew Howroyd, Oct 31 2018
Extensions
Terms a(33) and beyond from Andrew Howroyd, Oct 31 2018
Comments