A321012 Trajectory of 596 under repeated application of the map k -> A320486(k^2).
596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986, 596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986, 596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986, 596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986, 596, 3216, 103425, 197325
Offset: 1
Examples
The cycle of length 9 is (596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986).
References
- Eric Angelini, Postings to Sequence Fans Mailing List, Oct 24 2018 and Oct 26 2018.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
PadRight[{},80,{596,3216,103425,197325,897162,652,2510,631,3986}] (* Harvey P. Dale, Aug 08 2023 *)
-
PARI
Vec(x*(596 + 3216*x + 103425*x^2 + 197325*x^3 + 897162*x^4 + 652*x^5 + 2510*x^6 + 631*x^7 + 3986*x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^40)) \\ Colin Barker, Nov 04 2018
Formula
From Colin Barker, Nov 04 2018: (Start)
G.f.: x*(596 + 3216*x + 103425*x^2 + 197325*x^3 + 897162*x^4 + 652*x^5 + 2510*x^6 + 631*x^7 + 3986*x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-9) for n>9.
(End)
Comments