A321025 a(n) = sum of a(n-4) and a(n-5), with the lowest possible initial values that will generate a sequence where a(n) is always > a(n-1): 4, 5, 6, 7 and 8.
4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 20, 24, 28, 32, 37, 44, 52, 60, 69, 81, 96, 112, 129, 150, 177, 208, 241, 279, 327, 385, 449, 520, 606, 712, 834, 969, 1126, 1318, 1546, 1803, 2095, 2444, 2864, 3349, 3898, 4539, 5308, 6213, 7247, 8437, 9847, 11521, 13460, 15684
Offset: 1
Examples
a(6) = a(6-4) + a(6-5) = a(2) + a(1) = 5 + 4 = 9.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1).
Programs
-
Mathematica
Rest@ CoefficientList[Series[x (4 + 5 x + 6 x^2 + 7 x^3 + 4 x^4)/(1 - x^4 - x^5), {x, 0, 54}], x] (* Michael De Vlieger, Oct 31 2018 *)
-
PARI
a(n) = if(n<=5, n+3, a(n-4) + a(n-5)); \\ Michel Marcus, Oct 31 2018
-
PARI
Vec((4 + 5*x + 6*x^2 + 7*x^3 + 4*x^4)/(1 - x^4 - x^5) + O(x^50)) \\ Andrew Howroyd, Oct 31 2018
Formula
a(n) = a(n-4) + a(n-5) with a(1) = 4, a(2) = 5, a(3) = 6, a(4) = 7 and a(5) = 8.
G.f.: x*(4 + 5*x + 6*x^2 + 7*x^3 + 4*x^4)/(1 - x^4 - x^5). - Andrew Howroyd, Oct 31 2018
Extensions
a(19), a(20) corrected by Georg Fischer, May 24 2019
Comments