cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A259784 Number T(n,k) of permutations p of [n] with no fixed points where the maximal displacement of an element equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 3, 5, 0, 0, 0, 6, 18, 20, 0, 0, 1, 12, 44, 111, 97, 0, 0, 0, 24, 116, 396, 744, 574, 0, 0, 1, 44, 331, 1285, 3628, 5571, 3973, 0, 0, 0, 84, 932, 4312, 15038, 34948, 46662, 31520, 0, 0, 1, 159, 2532, 15437, 59963, 181193, 359724, 434127, 281825, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 05 2015

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0, 0;
  0, 1,  0;
  0, 0,  2,   0;
  0, 1,  3,   5,    0;
  0, 0,  6,  18,   20,    0;
  0, 1, 12,  44,  111,   97,    0;
  0, 0, 24, 116,  396,  744,  574,    0;
  0, 1, 44, 331, 1285, 3628, 5571, 3973, 0;
		

Crossrefs

Rows sums give A000166.
Column k=0 and main diagonal give A000007.
Columns k=1-10 give: A059841 (for n>0), A321048, A321049, A321050, A321051, A321052, A321053, A321054, A321055, A321056.
First lower diagonal gives A259834.
T(2n,n) gives A259785.
Cf. A259776.

Programs

  • Maple
    b:= proc(n, s, k) option remember; `if`(n=0, 1, `if`(n+k in s,
          b(n-1, (s minus {n+k}) union `if`(n-k>1, {n-k-1}, {}), k),
          add(`if`(j=n, 0, b(n-1, (s minus {j}) union
          `if`(n-k>1, {n-k-1}, {}), k)), j=s)))
        end:
    A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), b(n, {$max(1, n-k)..n}, k)):
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, s_, k_] := b[n, s, k] = If[n==0, 1, If[MemberQ[s, n+k], b[n-1, (s ~Complement~ {n+k}) ~Union~ If[n-k>1, {n-k-1}, {}], k], Sum[If[j==n, 0, b[n-1, (s ~Complement~ {j}) ~Union~ If[n-k>1, {n-k-1}, {}], k]], {j, s}]] ];
    A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Range[Max[1, n-k], n], k]];
    T[n_, k_] :=  A[n, k] - If[k == 0, 0, A[n, k-1]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2019, after Alois P. Heinz *)

Formula

T(n,k) = A259776(n,k) - A259776(n,k-1) for k>0, T(n,0) = A000007(n).
Showing 1-1 of 1 results.