cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321121 Triangle read by rows: T(n,k) is the unreduced numerator of the k-th weight in the quadrature rule for parabolic runout spline with respect to a mesh of n + 1 points.

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 3, 9, 9, 3, 13, 44, 30, 44, 13, 35, 115, 90, 90, 115, 35, 16, 53, 40, 46, 40, 53, 16, 131, 433, 330, 366, 366, 330, 433, 131, 179, 592, 450, 504, 486, 504, 450, 592, 179, 163, 539, 410, 458, 446, 446, 458, 410, 539, 163, 668, 2209, 1680, 1878, 1824, 1842, 1824, 1878, 1680, 2209, 668
Offset: 0

Views

Author

Keywords

Comments

The weights in this quadrature rule are T(n,k)/A321122(n), 0 <= k <= n. For n = 1, 2, 3, we obtain the trapezoid rule, Simpson's rule, and Simpson's 3/8 rule, respectively.

Examples

			Triangle begins (denominator is factored out):
    0;                                                 1/4
    1,   1;                                            1/2
    1,   4,   1;                                       1/3
    3,   9,   9,   3;                                  1/8
   13,  44,  30,  44,  13;                             1/36
   35, 115,  90,  90, 115,  35;                        1/96
   16,  53,  40,  46,  40,  53,  16;                   1/44
  131, 433, 330, 366, 366, 330, 433, 131;              1/360
  179, 592, 450, 504, 486, 504, 450, 592, 179;         1/492
  163, 539, 410, 458, 446, 446, 458, 410, 539, 163;    1/448
  ...
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.

Crossrefs

Cf. A321122 (Common denominators).
Cf. A093735/A093736 (Newton-Cotes formulas), A100640/A100641 (Cotesian numbers), A321118/A321119 (Holladay-Sard best quadrature formulas).

Programs

  • Mathematica
    s = -2 + Sqrt[3];
    e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
    f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
    w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
    a321122[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}]
    Join[{0, 1, 1, 1, 4, 1}, Table[FullSimplify[a321122[n]*w[n, k]], {n, 3, 12}, {k, 0, n}]] // Flatten
  • Maxima
    s : -2 + sqrt(3)$
    e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
    f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
    w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
    a321122(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
    append([0, 1, 1, 1, 4, 1], create_list(fullratsimp(a321122(n)*w(n, k)), n, 3, 12, k, 0, n));

Formula

T(n,k) = T(n,n-k).
T(0,0) = 0 and T(n,k) = A093735(n,k) for n = 1, 2, 3.
Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then T(n,k) = A321122(n)*w(n,k) for 0 <= k <= n, n >= 3.