A321121 Triangle read by rows: T(n,k) is the unreduced numerator of the k-th weight in the quadrature rule for parabolic runout spline with respect to a mesh of n + 1 points.
0, 1, 1, 1, 4, 1, 3, 9, 9, 3, 13, 44, 30, 44, 13, 35, 115, 90, 90, 115, 35, 16, 53, 40, 46, 40, 53, 16, 131, 433, 330, 366, 366, 330, 433, 131, 179, 592, 450, 504, 486, 504, 450, 592, 179, 163, 539, 410, 458, 446, 446, 458, 410, 539, 163, 668, 2209, 1680, 1878, 1824, 1842, 1824, 1878, 1680, 2209, 668
Offset: 0
Examples
Triangle begins (denominator is factored out): 0; 1/4 1, 1; 1/2 1, 4, 1; 1/3 3, 9, 9, 3; 1/8 13, 44, 30, 44, 13; 1/36 35, 115, 90, 90, 115, 35; 1/96 16, 53, 40, 46, 40, 53, 16; 1/44 131, 433, 330, 366, 366, 330, 433, 131; 1/360 179, 592, 450, 504, 486, 504, 450, 592, 179; 1/492 163, 539, 410, 458, 446, 446, 458, 410, 539, 163; 1/448 ...
References
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.
Links
- Franck Maminirina Ramaharo, Rows n = 0..150 of triangle, flattened
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II. The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), pp. 9-74.
- Wikipedia, Newton-Cotes formulas
Crossrefs
Programs
-
Mathematica
s = -2 + Sqrt[3]; e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)); f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)); w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]]; a321122[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}] Join[{0, 1, 1, 1, 4, 1}, Table[FullSimplify[a321122[n]*w[n, k]], {n, 3, 12}, {k, 0, n}]] // Flatten
-
Maxima
s : -2 + sqrt(3)$ e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$ f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$ w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$ a321122(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$ append([0, 1, 1, 1, 4, 1], create_list(fullratsimp(a321122(n)*w(n, k)), n, 3, 12, k, 0, n));
Formula
T(n,k) = T(n,n-k).
T(0,0) = 0 and T(n,k) = A093735(n,k) for n = 1, 2, 3.
Let s = -2 + sqrt(3), and define e(n) = s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n)), f(n,k) = 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n)), and w(n,0) = 1/4 + e(n)/6, w(n,1) = 2 - (1 + 1/6)*e(n), w(n,k) = 1 + f(n,k)/4 for 2 <= k <= n - 2. Then T(n,k) = A321122(n)*w(n,k) for 0 <= k <= n, n >= 3.
Comments