cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321144 Irregular triangle where T(n,k) is the number of divisors of n whose prime indices sum to k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2018

Keywords

Comments

The rows are all palindromes.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
  1
  1  1
  1  0  1
  1  1  1
  1  0  0  1
  1  1  1  1
  1  0  0  0  1
  1  1  1  1
  1  0  1  0  1
  1  1  0  1  1
  1  0  0  0  0  1
  1  1  2  1  1
  1  0  0  0  0  0  1
  1  1  0  0  1  1
  1  0  1  1  0  1
  1  1  1  1  1
  1  0  0  0  0  0  0  1
  1  1  1  1  1  1
  1  0  0  0  0  0  0  0  1
  1  1  1  1  1  1
  1  0  1  0  1  0  1
  1  1  0  0  0  1  1
  1  0  0  0  0  0  0  0  0  1
  1  1  2  2  1  1
  1  0  0  1  0  0  1
  1  1  0  0  0  0  1  1
  1  0  1  0  1  0  1
  1  1  1  0  1  1  1
  1  0  0  0  0  0  0  0  0  0  1
  1  1  1  2  1  1  1
		

Crossrefs

Row lengths are A056239. Number of nonzero entries in row n is A299701(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    Table[Count[Total/@primeMS/@Divisors[n],k],{n,20},{k,0,Total[primeMS[n]]}]