cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357879 Number of divisors of n with the same sum of prime indices as their quotient. Central column of A321144, taking gaps as 0's.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(3600) = 5 divisors, their prime indices, and the prime indices of their quotients:
  45: {2,2,3} * {1,1,1,1,3}
  50: {1,3,3} * {1,1,1,2,2}
  60: {1,1,2,3} * {1,1,2,3}
  72: {1,1,1,2,2} * {1,3,3}
  80: {1,1,1,1,3} * {2,2,3}
		

Crossrefs

Positions of nonzero terms are A357976, counted by A002219.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Table[Length[Select[Divisors[n],sumprix[#]==sumprix[n]/2&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    A357879(n) = sumdiv(n,d, A056239(d)==A056239(n/d)); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) = Sum_{d|n} [A056239(d) = A056239(n/d)], where [ ] is the Iverson bracket. - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A357976 Numbers with a divisor having the same sum of prime indices as their quotient.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 30, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 144, 154, 160, 165, 169, 192, 196, 198, 210, 220, 225, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 351, 352, 360, 361, 364, 390, 400, 432, 441, 442, 448
Offset: 1

Views

Author

Gus Wiseman, Oct 26 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   1: {}
   4: {1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  25: {3,3}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
For example, 40 has factorization 8*5, and both factors have the same sum of prime indices 3, so 40 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A002219.
A subset of A300061.
The squarefree case is A357854, counted by A237258.
Positions of nonzero terms in A357879.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Maple
    filter:= proc(n) local F,s,t,i,R;
      F:= ifactors(n)[2];
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], F);
      s:= add(t[1]*t[2],t=F)/2;
      if not s::integer then return false fi;
      try
      R:= Optimization:-Maximize(0, [add(F[i][1]*x[i],i=1..nops(F)) = s, seq(x[i]<= F[i][2],i=1..nops(F))], assume=nonnegint, depthlimit=20);
      catch "no feasible integer point found; use feasibilitytolerance option to adjust tolerance": return false;
      end try;
      true
    end proc:
    filter(1):= true:
    select(filter, [$1..1000]); # Robert Israel, Oct 26 2023
  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Select[Range[100],MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]

A357854 Squarefree numbers with a divisor having the same sum of prime indices as their quotient.

Original entry on oeis.org

1, 30, 70, 154, 165, 210, 273, 286, 390, 442, 462, 561, 595, 646, 714, 741, 858, 874, 910, 1045, 1155, 1173, 1254, 1326, 1330, 1334, 1495, 1653, 1771, 1794, 1798, 1870, 1938, 2139, 2145, 2294, 2415, 2465, 2470, 2530, 2622, 2639, 2730, 2926, 2945, 2958, 3034
Offset: 1

Views

Author

Gus Wiseman, Oct 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
    30: {1,2,3}
    70: {1,3,4}
   154: {1,4,5}
   165: {2,3,5}
   210: {1,2,3,4}
   273: {2,4,6}
   286: {1,5,6}
   390: {1,2,3,6}
For example, 210 has factorization 14*15, and both factors have the same sum of prime indices 5, so 210 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A237258.
A subset of A319241, squarefree case of A300061.
Squarefree positions of nonzero terms in A357879.
This is the squarefree case of A357976, counted by A002219.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Select[Range[1000],SquareFreeQ[#]&&MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]
Showing 1-3 of 3 results.