cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002219 a(n) is the number of partitions of 2n that can be obtained by adding together two (not necessarily distinct) partitions of n.

Original entry on oeis.org

1, 3, 6, 14, 25, 53, 89, 167, 278, 480, 760, 1273, 1948, 3089, 4682, 7177, 10565, 15869, 22911, 33601, 47942, 68756, 96570, 136883, 189674, 264297, 362995, 499617, 678245, 924522, 1243098, 1676339, 2237625, 2988351, 3957525, 5247500, 6895946, 9070144, 11850304
Offset: 1

Views

Author

Keywords

Examples

			Here are the seven partitions of 5: 1^5, 1^3 2, 1 2^2, 1^2 3, 2 3, 1 4, 5. Adding these together in pairs we get a(5) = 25 partitions of 10: 1^10, 1^8 2, 1^6 2^2, etc. (we get all partitions of 10 into parts of size <= 5 - there are 30 such partitions - except for five of them: we do not get 2 4^2, 3^2 4, 2^3 4, 1 3^3, 2^5). - _N. J. A. Sloane_, Jun 03 2012
From _Gus Wiseman_, Oct 27 2022: (Start)
The a(1) = 1 through a(4) = 14 partitions:
  (11)  (22)    (33)      (44)
        (211)   (321)     (422)
        (1111)  (2211)    (431)
                (3111)    (2222)
                (21111)   (3221)
                (111111)  (3311)
                          (4211)
                          (22211)
                          (32111)
                          (41111)
                          (221111)
                          (311111)
                          (2111111)
                          (11111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column m=2 of A213086.
Bisection of A276107.
The strict version is A237258, ranked by A357854.
Ranked by A357976 = positions of nonzero terms in A357879.
A122768 counts distinct submultisets of partitions.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.

Programs

  • Maple
    g:= proc(n, i) option remember;
         `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
        end:
    b:= proc(n, i, s) option remember;
         `if`(i=1 and s<>{} or n in s, g(n, i), `if`(i<1 or s={}, 0,
          b(n, i-1, s)+ `if`(i>n, 0, b(n-i, i, map(x-> {`if`(x>n-i, NULL,
          max(x, n-i-x)), `if`(xn, NULL, max(x-i, n-x))}[], s)))))
        end:
    a:= n-> b(2*n, n, {n}):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; A006827[n_] := b[2*n, 2*n, {n}]; a[n_] := PartitionsP[2*n] - A006827[n]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    subptns[s_]:=primeMS/@Divisors[Times@@Prime/@s];
    Table[Length[Select[IntegerPartitions[2n],MemberQ[Total/@subptns[#],n]&]],{n,10}] (* Gus Wiseman, Oct 27 2022 *)
  • Python
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A002219(n): return len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023

Formula

See A213074 for Metropolis and Stein's formulas.
a(n) = A000041(2*n) - A006827(n) = A000041(2*n) - A046663(2*n,n).
a(n) = A276107(2*n). - Max Alekseyev, Oct 17 2022

Extensions

Better description from Vladeta Jovovic, Mar 06 2000
More terms from Christian G. Bower, Oct 12 2001
Edited by N. J. A. Sloane, Jun 03 2012
More terms from Alois P. Heinz, Jul 10 2012

A237258 Number of strict partitions of 2n that include a partition of n.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 32, 43, 63, 84, 122, 158, 220, 293, 393, 511, 685, 881, 1156, 1485, 1925, 2445, 3147, 3952, 5019, 6323, 7924, 9862, 12336, 15259, 18900, 23294, 28646, 35091, 42985, 52341, 63694, 77336, 93588, 112973, 136367, 163874, 196638
Offset: 0

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

A strict partition is a partition into distinct parts.

Examples

			a(5) counts these partitions of 10: [5,4,1], [5,3,2], [4,3,2,1].
		

Crossrefs

The non-strict version is A002219, ranked by A357976.
These partitions are ranked by A357854.
A000712 counts distinct submultisets of partitions, strict A032302.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.

Programs

  • Mathematica
    z = 24; Table[theTotals = Map[{#, Map[Total, Subsets[#]]} &,  Select[IntegerPartitions[2 nn], # == DeleteDuplicates[#] &]]; Length[Map[#[[1]] &, Select[theTotals, Length[Position[#[[2]], nn]] >= 1 &]]], {nn, z}] (* Peter J. C. Moses, Feb 04 2014 *)

Formula

a(n) = A237194(2n,n).

Extensions

a(31)-a(47) from Alois P. Heinz, Feb 07 2014

A357976 Numbers with a divisor having the same sum of prime indices as their quotient.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 30, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 144, 154, 160, 165, 169, 192, 196, 198, 210, 220, 225, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 351, 352, 360, 361, 364, 390, 400, 432, 441, 442, 448
Offset: 1

Author

Gus Wiseman, Oct 26 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   1: {}
   4: {1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  25: {3,3}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
For example, 40 has factorization 8*5, and both factors have the same sum of prime indices 3, so 40 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A002219.
A subset of A300061.
The squarefree case is A357854, counted by A237258.
Positions of nonzero terms in A357879.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Maple
    filter:= proc(n) local F,s,t,i,R;
      F:= ifactors(n)[2];
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], F);
      s:= add(t[1]*t[2],t=F)/2;
      if not s::integer then return false fi;
      try
      R:= Optimization:-Maximize(0, [add(F[i][1]*x[i],i=1..nops(F)) = s, seq(x[i]<= F[i][2],i=1..nops(F))], assume=nonnegint, depthlimit=20);
      catch "no feasible integer point found; use feasibilitytolerance option to adjust tolerance": return false;
      end try;
      true
    end proc:
    filter(1):= true:
    select(filter, [$1..1000]); # Robert Israel, Oct 26 2023
  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Select[Range[100],MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]

A064914 Number of ordered biquanimous partitions of 2n.

Original entry on oeis.org

1, 1, 5, 23, 105, 449, 1902, 7828, 31976, 129200, 520425, 2088217, 8371186, 33514797, 134140430, 536699674, 2147154667, 8589198795, 34358341823, 137435830265, 549749857574, 2199010044813, 8796067657649, 35184315676573, 140737380485376, 562949713881526
Offset: 0

Author

Christian G. Bower, Oct 12 2001

Keywords

Comments

A biquanimous partition is one that can be bisected into two equal sized parts: e.g. 3+2+1 is a biquanimous partition of 6 as it contains 3 and 2+1, but 5+1 is not.

Examples

			From _Gus Wiseman_, Apr 19 2024: (Start)
The a(0) = 1 through a(3) = 23 biquanimous compositions:
  ()  (11)  (22)    (33)
            (112)   (123)
            (121)   (132)
            (211)   (213)
            (1111)  (231)
                    (312)
                    (321)
                    (1113)
                    (1122)
                    (1131)
                    (1212)
                    (1221)
                    (1311)
                    (2112)
                    (2121)
                    (2211)
                    (3111)
                    (11112)
                    (11121)
                    (11211)
                    (12111)
                    (21111)
                    (111111)
(End)
		

Crossrefs

The unordered version (integer partitions) is A002219, ranks A357976.
The unordered complement is A371795, even case A006827, ranks A371731.
The complement is counted by A371956.
These compositions have ranks A372120, complement A372119.
A237258 (aerated) counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n], MemberQ[Total/@Subsets[#],n]&]],{n,0,5}] (* Gus Wiseman, Apr 19 2024 *)

Extensions

More terms from Alois P. Heinz, Jun 12 2017

A357854 Squarefree numbers with a divisor having the same sum of prime indices as their quotient.

Original entry on oeis.org

1, 30, 70, 154, 165, 210, 273, 286, 390, 442, 462, 561, 595, 646, 714, 741, 858, 874, 910, 1045, 1155, 1173, 1254, 1326, 1330, 1334, 1495, 1653, 1771, 1794, 1798, 1870, 1938, 2139, 2145, 2294, 2415, 2465, 2470, 2530, 2622, 2639, 2730, 2926, 2945, 2958, 3034
Offset: 1

Author

Gus Wiseman, Oct 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
    30: {1,2,3}
    70: {1,3,4}
   154: {1,4,5}
   165: {2,3,5}
   210: {1,2,3,4}
   273: {2,4,6}
   286: {1,5,6}
   390: {1,2,3,6}
For example, 210 has factorization 14*15, and both factors have the same sum of prime indices 5, so 210 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A237258.
A subset of A319241, squarefree case of A300061.
Squarefree positions of nonzero terms in A357879.
This is the squarefree case of A357976, counted by A002219.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Select[Range[1000],SquareFreeQ[#]&&MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]

A371791 Number of biquanimous subsets of {1..n}. Sets with a subset having the same sum as the complement.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 18, 38, 82, 175, 373, 787, 1651, 3439, 7126, 14667, 30049, 61249, 124440, 251922, 508779, 1025183, 2062287, 4142644, 8312927, 16667005, 33395275, 66880828, 133892910, 267976571, 536225921, 1072842931, 2146233971, 4293248183, 8587569636, 17176654105, 34355356676, 68713584720, 137430991937, 274867311960, 549741605972, 1099492913172, 2198998307679, 4398013970156, 8796049891377, 17592130283755, 35184298506429
Offset: 0

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			For S = {1,3,4,6} we have {{1,6},{3,4}}, so S is counted under a(6).
The a(0) = 1 through a(6) = 18 subsets:
  {}  {}  {}  {}       {}         {}         {}
              {1,2,3}  {1,2,3}    {1,2,3}    {1,2,3}
                       {1,3,4}    {1,3,4}    {1,3,4}
                       {1,2,3,4}  {1,4,5}    {1,4,5}
                                  {2,3,5}    {1,5,6}
                                  {1,2,3,4}  {2,3,5}
                                  {1,2,4,5}  {2,4,6}
                                  {2,3,4,5}  {1,2,3,4}
                                             {1,2,3,6}
                                             {1,2,4,5}
                                             {1,2,5,6}
                                             {1,3,4,6}
                                             {2,3,4,5}
                                             {2,3,5,6}
                                             {3,4,5,6}
                                             {1,2,3,4,6}
                                             {1,2,4,5,6}
                                             {2,3,4,5,6}
		

Crossrefs

First differences are A232466.
The complement is counted by A371792, differences A371793.
This is the "bi-" case of A371796, differences A371797.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[Subsets[Range[n]],biqQ]],{n,0,15}]

Extensions

a(16) onwards from Martin Fuller, Mar 21 2025

A371731 Heinz numbers of non-biquanimous integer partitions. Numbers without a divisor having the same sum of prime indices as the quotient.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

These partitions are counted by A371795, even case A006827.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 aerated and ranked by A357976.

Examples

			The prime indices of 975 are {2,3,3,6}, which are not biquanimous, so 975 is in the sequence.
The prime indices of 900 are {1,1,2,2,3,3}, which can be partitioned into {{1,2,3},{1,2,3}} or {{3,3},{1,1,2,2}}, so 900 is not in the sequence.
		

Crossrefs

The complement is A357976, counted by A002219.
For prime signature instead of indices we have A371782, complement A371781.
Partitions of this type are counted by A371795, even case A006827.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Select[Range[100],Not@*biqQ@*prix]

Formula

Numbers n without a divisor d|n such that A056239(d) = A056239(n/d).

A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0

Author

Gus Wiseman, Nov 07 2023

Keywords

Examples

			The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
    0   1
    1   1
    2   2   1
    5   3   3
    8   4   9   1
   17   6  16   1   2
   24   7  33   4   9
   46  11  52   3  18   1   4
   64  12  91   6  38   3  15   1   1
  107  17 138   9  68   2  28   2  12   0   2
  147  19 219  12 117   6  56   3  34   2   9   0   3
Row n = 4 counts the following partitions:
  (8)     (44)        (431)      (221111)
  (71)    (3311)      (422)
  (62)    (2222)      (4211)
  (611)   (11111111)  (41111)
  (53)                (3221)
  (521)               (32111)
  (5111)              (311111)
  (332)               (22211)
                      (2111111)
		

Crossrefs

Row sums w/o the first column are A002219, ranks A357976, strict A237258.
Column k = 0 is A006827.
Row sums are A058696.
Column k = 1 is A108917.
The corresponding rank statistic is A357879 (without empty rows).
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, ranks A366321.
A182616 counts partitions of 2n with at least one odd part, ranks A366530.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sums of partitions, rank statistic A299701.
A365543 counts partitions of n with a submultiset summing to k.

Programs

  • Mathematica
    t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
    Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]

Formula

T(n,1) = A108917(n).

A371955 Numbers with triquanimous prime indices.

Original entry on oeis.org

8, 27, 36, 48, 64, 125, 150, 180, 200, 216, 240, 288, 320, 343, 384, 441, 490, 512, 567, 588, 630, 700, 729, 756, 784, 810, 840, 900, 972, 1000, 1008, 1080, 1120, 1200, 1296, 1331, 1344, 1440, 1600, 1694, 1728, 1792, 1815, 1920, 2156, 2178, 2197, 2304, 2310
Offset: 1

Author

Gus Wiseman, Apr 19 2024

Keywords

Comments

A finite multiset of numbers is defined to be triquanimous iff it can be partitioned into three multisets with equal sums.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     8: {1,1,1}
    27: {2,2,2}
    36: {1,1,2,2}
    48: {1,1,1,1,2}
    64: {1,1,1,1,1,1}
   125: {3,3,3}
   150: {1,2,3,3}
   180: {1,1,2,2,3}
   200: {1,1,1,3,3}
   216: {1,1,1,2,2,2}
   240: {1,1,1,1,2,3}
   288: {1,1,1,1,1,2,2}
   320: {1,1,1,1,1,1,3}
   343: {4,4,4}
   384: {1,1,1,1,1,1,1,2}
   441: {2,2,4,4}
   490: {1,3,4,4}
   512: {1,1,1,1,1,1,1,1,1}
   567: {2,2,2,2,4}
   588: {1,1,2,4,4}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A002220.
For biquanimous we have A357976, counted by A002219.
For non-biquanimous we have A371731, counted by A371795, even case A006827.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A237258 (aerated) counts biquanimous strict partitions, ranks A357854.
A371783 counts k-quanimous partitions.

Programs

  • Maple
    tripart:= proc(L) local t,X,Y,n,cons,i,R;
      t:= convert(L,`+`)/3;
      n:= nops(L);
      if not t::integer then return false fi;
      cons:= [add(L[i]*X[i],i=1..n)=t,
              add(L[i]*Y[i],i=1..n)=t,
              seq(X[i] + Y[i] <= 1, i=1..n)];
      R:= traperror(Optimization:-Maximize(0, cons, assume=binary));
      R::list
    end proc:
    primeindices:= proc(n) local F,t;
      F:= ifactors(n)[2];
      map(t -> numtheory:-pi(t[1])$t[2], F)
    end proc:
    select(tripart @ primindices, [$2..3000]); # Robert Israel, May 19 2025
  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#], Length[#]==3&&SameQ@@hwt/@#&]!={}&]

A371956 Number of non-biquanimous compositions of 2n.

Original entry on oeis.org

0, 1, 3, 9, 23, 63, 146, 364
Offset: 0

Author

Gus Wiseman, Apr 20 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The a(1) = 1 through a(3) = 9 compositions:
  (2)  (4)    (6)
       (1,3)  (1,5)
       (3,1)  (2,4)
              (4,2)
              (5,1)
              (1,1,4)
              (1,4,1)
              (2,2,2)
              (4,1,1)
		

Crossrefs

The unordered complement is A002219, ranks A357976.
The unordered version is A006827, even case of A371795, ranks A371731.
The complement is counted by A064914.
These compositions have ranks A372119, complement A372120.
A237258 (aerated) counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n], !MemberQ[Total/@Subsets[#],n]&]],{n,0,5}]
Showing 1-10 of 12 results. Next