A321179 a(n) = [x^(n^2)] Product_{k=1..n} theta_3(q^k), where theta_3() is the Jacobi theta function.
1, 2, 2, 14, 44, 174, 988, 4314, 20780, 126320, 692328, 3836166, 23160914, 135752866, 803203484, 4902966108, 29745996950, 181712320506, 1124481497694, 6965802854354, 43360326335154, 271658784580760, 1706393926177980, 10757142052998054, 68081390206251952, 432001821971576352
Offset: 0
Keywords
Examples
Solutions (a_1, a_2, a_3) to the equation a_1^2 + 2*a_2^2 + 3*a_3^2 = 9. ------------------------------------------------------------------------ ( 1, 2, 0), ( 1, -2, 0), (-1, 2, 0), (-1, -2, 0), ( 2, 1, 1), ( 2, 1, -1), ( 2, -1, 1), ( 2, -1, -1), (-2, 1, 1), (-2, 1, -1), (-2, -1, 1), (-2, -1, -1), ( 3, 0, 0), (-3, 0, 0).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..400 (first 91 terms from Seiichi Manyama)
Programs
-
Mathematica
nmax = 20; Table[SeriesCoefficient[Product[EllipticTheta[3, 0, x^k], {k, 1, n}], {x, 0, n^2}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
-
PARI
{a(n) = polcoeff(prod(i=1, n, 1+2*sum(j=1, sqrtint(n^2\i), x^(i*j^2)+x*O(x^(n^2)))), n^2)}
Formula
a(n) ~ c * d^n / n^(7/4), where d = 6.8137220913147... and c = 0.178176349247... - Vaclav Kotesovec, Oct 30 2018
Comments