A321184 Number of integer partitions of n that are the vertex-degrees of some multiset of nonempty sets, none of which is a proper subset of any other, with no singletons.
1, 0, 1, 1, 3, 2, 7, 6, 15, 15, 30
Offset: 0
Examples
The a(2) = 1 through a(8) = 15 partitions: (11) (111) (22) (2111) (33) (2221) (44) (211) (11111) (222) (3211) (332) (1111) (321) (22111) (422) (2211) (31111) (431) (3111) (211111) (2222) (21111) (1111111) (3221) (111111) (3311) (4211) (22211) (32111) (41111) (221111) (311111) (2111111) (11111111) The a(6) = 7 integer partitions together with a realizing multi-antichain of each (the parts of the partition count the appearances of each vertex in the multi-antichain): (33): {{1,2},{1,2},{1,2}} (321): {{1,2},{1,2},{1,3}} (3111): {{1,2},{1,3},{1,4}} (222): {{1,2,3},{1,2,3}} (2211): {{1,2,3},{1,2,4}} (21111): {{1,2},{1,3,4,5}} (111111): {{1,2,3,4,5,6}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; multanti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1,stableQ[#]]&]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[strnorm[n],multanti[#]!={}&]],{n,8}]