cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321187 Triangle read by rows, T(n, k) is the determinant of the matrix [s(n,k), s(n,k+1); s(n+1,k), s(n+1,k+1)] where s is the triangle A110440 of little Schroeder numbers.

Original entry on oeis.org

1, 7, 1, 71, 23, 1, 913, 456, 48, 1, 13777, 9060, 1560, 82, 1, 233119, 185805, 44262, 3950, 125, 1, 4298911, 3951927, 1188747, 151585, 8355, 177, 1, 84769393, 87024056, 31242008, 5172370, 416730, 15666, 238, 1, 1763748273, 1977448272, 815985408, 165150744, 17626140, 985068, 26936, 308, 1
Offset: 0

Views

Author

Michel Marcus, Oct 31 2018

Keywords

Examples

			Triangle begins:
       1;
       7,      1;
      71,     23,     1;
     913,    456,    48,    1;
   13777,   9060,  1560,   82,   1;
  233119, 185805, 44262, 3950, 125, 1;
  ...
		

Crossrefs

Cf. A110440.

Programs

  • Mathematica
    s[n_, k_] := Sum[i (-1)^(k - i + 1) Binomial[k + 1, i] Sum[(-1)^j 2^(n + 1 - j) (2n + i - j + 1)!/((n + i - j + 1)! j! (n - j + 1)!), {j, 0, n+1}], {i, 0, k + 1}];
    T[n_, k_] := Det[{{s[n, k], s[n, k+1]}, {s[n+1, k], s[n+1, k+1]}}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 02 2019, translated from PARI *)
  • PARI
    s(n,k) = sum(i = 0, k+1, (i*(-1)^(k - i + 1)*binomial(k + 1, i)*sum(j=0, n+1, (-1)^j*2^(n + 1 - j)*(2*n + i - j + 1)!/((n + i - j + 1)!*j!*(n - j + 1)!)))); \\ A110440
    T(n,k) = matdet([s(n,k), s(n,k+1); s(n+1,k), s(n+1,k+1)]);