A321187 Triangle read by rows, T(n, k) is the determinant of the matrix [s(n,k), s(n,k+1); s(n+1,k), s(n+1,k+1)] where s is the triangle A110440 of little Schroeder numbers.
1, 7, 1, 71, 23, 1, 913, 456, 48, 1, 13777, 9060, 1560, 82, 1, 233119, 185805, 44262, 3950, 125, 1, 4298911, 3951927, 1188747, 151585, 8355, 177, 1, 84769393, 87024056, 31242008, 5172370, 416730, 15666, 238, 1, 1763748273, 1977448272, 815985408, 165150744, 17626140, 985068, 26936, 308, 1
Offset: 0
Examples
Triangle begins: 1; 7, 1; 71, 23, 1; 913, 456, 48, 1; 13777, 9060, 1560, 82, 1; 233119, 185805, 44262, 3950, 125, 1; ...
Links
- Fangfang Cai, Qing-Hu Hou, Yidong Sun, Arthur L.B. Yang, Combinatorial identities related to 2×2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018. See Table 1.3 p. 3.
Crossrefs
Cf. A110440.
Programs
-
Mathematica
s[n_, k_] := Sum[i (-1)^(k - i + 1) Binomial[k + 1, i] Sum[(-1)^j 2^(n + 1 - j) (2n + i - j + 1)!/((n + i - j + 1)! j! (n - j + 1)!), {j, 0, n+1}], {i, 0, k + 1}]; T[n_, k_] := Det[{{s[n, k], s[n, k+1]}, {s[n+1, k], s[n+1, k+1]}}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 02 2019, translated from PARI *)
-
PARI
s(n,k) = sum(i = 0, k+1, (i*(-1)^(k - i + 1)*binomial(k + 1, i)*sum(j=0, n+1, (-1)^j*2^(n + 1 - j)*(2*n + i - j + 1)!/((n + i - j + 1)!*j!*(n - j + 1)!)))); \\ A110440 T(n,k) = matdet([s(n,k), s(n,k+1); s(n+1,k), s(n+1,k+1)]);