A321192 a(n) = [x^n] Product_{k>=1} (1 + x^k)^tau_n(k), where tau_n(k) = number of ordered n-factorizations of k.
1, 1, 2, 6, 20, 55, 239, 700, 3212, 10104, 48622, 161579, 806843, 2799199, 14379647, 52018828, 273472712, 1023655306, 5491615463, 21234676241, 115910309103, 460998296937, 2556361045845, 10440651927427, 58714921974979, 245586789818255, 1399187406060485
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 30; Table[SeriesCoefficient[Product[(1 + x^k)^tau[k, n], {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)
Formula
a(n) = [x^n] Product_{k_1>=1, k_2>=1, ..., k_n>=1} (1 + x^(k_1*k_2*...*k_n)).