cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321191 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^tau_n(k), where tau_n(k) = number of ordered n-factorizations of k.

Original entry on oeis.org

1, 1, 3, 7, 29, 71, 336, 932, 4593, 13690, 69708, 222718, 1163734, 3902016, 20825927, 73229397, 397806717, 1452193925, 8016518379, 30328368519, 169781766056, 662143701506, 3755514158949, 15071604241851, 86496856963200, 356063096545571, 2066351471542036
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 30; Table[SeriesCoefficient[Product[1/(1 - x^k)^tau[k, n], {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)

Formula

a(n) = [x^n] Product_{k_1>=1, k_2>=1, ..., k_n>=1} 1/(1 - x^(k_1*k_2*...*k_n)).

A321287 Expansion of Product_{k>=1} (1 + x^k)^tau_k(k), where tau_k(k) = number of ordered k-factorizations of k (A163767).

Original entry on oeis.org

1, 1, 2, 5, 14, 22, 70, 109, 318, 551, 1203, 2136, 5752, 9263, 20641, 37151, 85084, 144918, 317356, 546730, 1196302, 2076810, 4281584, 7459351, 15860805, 27146911, 54715933, 95712097, 194059563, 334322338, 663159101, 1147479053, 2270647257, 3923732160, 7587368893
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    tau[n_,1] = 1; tau[n_,k_]:=tau[n,k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 40; CoefficientList[Series[Product[(1+x^k)^tau[k,k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 03 2018, after Robert G. Wilson v *)
Showing 1-2 of 2 results.