cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321202 Row sums of the irregular triangle A321201.

Original entry on oeis.org

1, 1, 2, 2, 5, 3, 7, 7, 9, 9, 15, 11, 18, 18, 21, 21, 30, 24, 34, 34, 38, 38, 50, 42, 55, 55, 60, 60, 75, 65, 81, 81, 87, 87, 105, 93, 112, 112, 119, 119, 140, 126, 148, 148, 156, 156, 180, 164, 189, 189, 198, 198, 225, 207, 235, 235, 245, 245, 275, 255, 286, 286, 297
Offset: 2

Views

Author

Wolfdieter Lang, Nov 05 2018

Keywords

Comments

Total number of parts in the partitions of n into parts of size 2 and 3. - Andrew Howroyd, Nov 10 2018

Crossrefs

Programs

  • Mathematica
    row[n_] := Reap[Do[If[2 e2 + 3 e3 == n, Sow[{e2, e3}]], {e2, 0, n/2}, {e3, 0, n/3}]][[2, 1]];
    a[n_] := row[n] // Flatten // Total;
    Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Nov 23 2018 *)
  • PARI
    Vec((1 + 2*x + 2*x^2)/((1 + x + x^2)^2*(1 + x)^2*(1 - x)^3) + O(x^60)) \\ Andrew Howroyd, Nov 10 2018

Formula

a(n) = Sum_{k=1..2*A008615(n+2)} A321201(n, k), n >= 2.
From Andrew Howroyd, Nov 10 2018: (Start)
G.f.: x^2*(1 + 2*x + 2*x^2)/((1 + x + x^2)^2*(1 + x)^2*(1 - x)^3).
a(n) = Sum_{k=0..floor(n/6)} 2*k + (n-6*k)/2 for even n.
a(n) = Sum_{k=0..floor((n-3)/6)} 2*k + 1 + (n-3-6*k)/2 for odd n.
(End)

Extensions

Terms a(27) and beyond from Andrew Howroyd, Nov 10 2018