A321202 Row sums of the irregular triangle A321201.
1, 1, 2, 2, 5, 3, 7, 7, 9, 9, 15, 11, 18, 18, 21, 21, 30, 24, 34, 34, 38, 38, 50, 42, 55, 55, 60, 60, 75, 65, 81, 81, 87, 87, 105, 93, 112, 112, 119, 119, 140, 126, 148, 148, 156, 156, 180, 164, 189, 189, 198, 198, 225, 207, 235, 235, 245, 245, 275, 255, 286, 286, 297
Offset: 2
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,1,3,2,-2,-3,-1,1,1).
Programs
-
Mathematica
row[n_] := Reap[Do[If[2 e2 + 3 e3 == n, Sow[{e2, e3}]], {e2, 0, n/2}, {e3, 0, n/3}]][[2, 1]]; a[n_] := row[n] // Flatten // Total; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Nov 23 2018 *)
-
PARI
Vec((1 + 2*x + 2*x^2)/((1 + x + x^2)^2*(1 + x)^2*(1 - x)^3) + O(x^60)) \\ Andrew Howroyd, Nov 10 2018
Formula
From Andrew Howroyd, Nov 10 2018: (Start)
G.f.: x^2*(1 + 2*x + 2*x^2)/((1 + x + x^2)^2*(1 + x)^2*(1 - x)^3).
a(n) = Sum_{k=0..floor(n/6)} 2*k + (n-6*k)/2 for even n.
a(n) = Sum_{k=0..floor((n-3)/6)} 2*k + 1 + (n-3-6*k)/2 for odd n.
(End)
Extensions
Terms a(27) and beyond from Andrew Howroyd, Nov 10 2018
Comments