cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A321257 Start with an equilateral triangle, and repeatedly append along the triangles of the previous step equilateral triangles with half their side length that do not overlap with any prior triangle; a(n) gives the number of triangles appended at n-th step.

Original entry on oeis.org

1, 6, 21, 60, 147, 330, 705, 1464, 2991, 6054, 12189, 24468, 49035, 98178, 196473, 393072, 786279, 1572702, 3145557, 6291276, 12582723, 25165626, 50331441, 100663080, 201326367, 402652950, 805306125, 1610612484, 3221225211, 6442450674, 12884901609, 25769803488
Offset: 1

Views

Author

Rémy Sigrist, Nov 01 2018

Keywords

Comments

The following diagram depicts the first three steps of the construction:
- - - -
/ \ / \ / \ / \
/ 3 \ / 3 \ / 3 \ / 3 \
-------------------------
/ \ / \ / \
/ 3 \ 2 / \ 2 / 3 \
------- / \ -------
/ \ / \ / \ / \ / \
/ 3 \ / 3 \ / \ / 3 \ / 3 \
------------- -------------
/ \ / \ / \
/ 3 \ 2 / 1 \ 2 / 3 \
------- / \ -------
/ \ / \ / \
/ 3 \ / \ / 3 \
-------------------------------------
/ \ / \ / \
/ 3 \ 2 / 3 \ 2 / 3 \
------- ------- -------
/ \ / \ / \ / \
/ 3 \ / 3 \ / 3 \ / 3 \
-------------------------
A triangle of step n+1 touches one or two triangles of step n.
The construction presents holes from the 3rd step onwards; these will be gradually filled in the subsequent steps.
The limiting construction is a hexagon; its area is 6 times the area of the initial triangle.
See A321237 for a similar sequence.

Crossrefs

Cf. A321237.

Programs

  • GAP
    Concatenation([1],List([2..35],n->3*(2^(n-1)+3*(2^(n-1)-n)))); # Muniru A Asiru, Nov 02 2018
  • Magma
    [1] cat [3*(2^(n-1) + 3*(2^(n-1)-n)): n in [2..35]]; // Vincenzo Librandi, Nov 02 2018
    
  • Maple
    1,seq(3*(2^(n-1)+3*(2^(n-1)-n)),n=2..35); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    CoefficientList[Series[(1 + 2 x + 2 x^2 + 4 x^3) / ((1 - 2 x) (1 - x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 02 2018 *)
  • PARI
    a(n) = if (n==1, 1, 3*(2^(n-1) + 3*(2^(n-1)-n)))
    

Formula

a(n) = 3*(2^(n-1) + 3*(2^(n-1)-n)) for any n > 1.
Sum_{n > 0} a(n) / 4^(n-1) = 6.
G.f.: x*(1 + 2*x + 2*x^2 + 4*x^3)/((1-2*x)*(1-x)^2). - Vincenzo Librandi, Nov 02 2018
a(n) - 4*a(n-1) + 5*a(n-2) - 2*a(n-3) = 0, with n>1. - Vincenzo Librandi, Nov 02 2018
Showing 1-1 of 1 results.