cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321244 Non-isomorphic proper colorings of the 3 X 3 grid graph using at most n colors under rotational and reflectional symmetries.

Original entry on oeis.org

0, 2, 69, 1572, 19865, 153480, 830802, 3476144, 12003462, 35757630, 94780235, 228579252, 509929719, 1065625652, 2106541920, 3969848640, 7176749852, 12509692794, 21113614017, 34626453860, 55344881445, 86431928352, 132174030494, 198295824432, 292341936450, 424135940150, 606327641127, 855040875444, 1190635082147, 1638595028940
Offset: 1

Views

Author

Marko Riedel, Nov 01 2018

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Programs

  • Magma
    [(1/8)*n^9-(3/2)*n^8+(33/4)*n^7-(53/2)*n^6+(217/4)*n^5-(291/4)*n^4 +(507/8)*n^3-(133/4)*n^2+8*n: n in [1..30]]; // Vincenzo Librandi, Nov 04 2018
  • Mathematica
    CoefficientList[Series[x (2 + 49 x + 972 x^2 + 7010 x^3 + 17710 x^4 + 15273 x^5 + 4076 x^6 + 268 x^7) / (1 - x)^10, {x, 0, 30}], x] (* Vincenzo Librandi Nov 04 2018 *)
  • PARI
    concat(0, Vec(x^2*(2 + 49*x + 972*x^2 + 7010*x^3 + 17710*x^4 + 15273*x^5 + 4076*x^6 + 268*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Nov 01 2018
    

Formula

a(n) = (1/8)*n^9 - (3/2)*n^8 + (33/4)*n^7 - (53/2)*n^6 + (217/4)*n^5 - (291/4)*n^4 + (507/8)*n^3 - (133/4)*n^2 + 8*n.
From Colin Barker, Nov 01 2018: (Start)
G.f.: x^2*(2 + 49*x + 972*x^2 + 7010*x^3 + 17710*x^4 + 15273*x^5 + 4076*x^6 + 268*x^7) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)

A321245 Non-isomorphic proper colorings of the 4 X 4 grid graph using at most n colors under rotational and reflectional symmetries.

Original entry on oeis.org

0, 1, 1155, 759759, 103786510, 4767856260, 107118740001, 1465350136810, 13956101513964, 100946621623995, 588405869207695, 2882842751900001, 12245455022841690, 46164185630256694, 157281327978056205, 491245336843482180, 1422828159652548376, 3857444027819847045, 9864873410828916699, 23951146853875652515, 55509091777214287590
Offset: 1

Views

Author

Marko Riedel, Nov 01 2018

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

a(n) = (1/8)*n^16 - 3*n^15 + (69/2)*n^14 - (2015/8)*n^13 + (10437/8)*n^12 - (20307/4)*n^11 + 15333*n^10 - (292907/8)*n^9 + (557915/8)*n^8 - (848501/8)*n^7 + (1023195/8)*n^6 - (240539/2)*n^5 + (683997/8)*n^4 - (347485/8)*n^3 + (112831/8)*n^2 - (8807/4)*n.
Showing 1-2 of 2 results.