A321274 Sum over all permutations of [n] of the minimum of the lengths of longest increasing subsequence and longest decreasing subsequence.
1, 2, 10, 46, 274, 1894, 14660, 128648, 1259740, 13540882, 158689006, 2018664332, 27699652406, 407457326286, 6395402111042, 106731605965344, 1887716456363316, 35269257369001618, 694027051724655398, 14346767204627002964, 310852440258761877068, 7045172291061429434354
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..70
- Wikipedia, Longest increasing subsequence
Programs
-
Maple
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): f:= l-> h(l)^2*min(l[1], nops(l)): g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): a:= n-> g(n$2, []): seq(a(n), n=1..23);