cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003316 Sum of lengths of longest increasing subsequences of all permutations of n elements.

Original entry on oeis.org

1, 3, 12, 58, 335, 2261, 17465, 152020, 1473057, 15730705, 183571817, 2324298010, 31737207034, 464904410985, 7272666016725, 121007866402968, 2133917906948645, 39756493513248129, 780313261631908137, 16093326774432620874, 347958942706716524974
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008304 (which is concerned with runs of adjacent elements).
Row sums of A214152.

Programs

  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                    add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    a:= n-> add(k* (g(n-k, k, [k])), k=1..n):
    seq(a(n), n=1..22);  # Alois P. Heinz, Jul 05 2012
  • Mathematica
    h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := Sum[k*g[n-k, k, {k}], {k, 1, n}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)

Formula

From Alois P. Heinz, Nov 04 2018: (Start)
a(n) = Sum_{k=1..n} k * A047874(n,k).
A321274(n) < a(n) < A321273(n) for n > 1. (End)
A theorem of Vershik and Kerov (1977) implies that a(n) ~ 2 * sqrt(n) * n!. - Ludovic Schwob, Apr 04 2024

Extensions

Corrected a(13) and extended beyond a(16) by Alois P. Heinz, Jul 05 2012

A321273 Sum over all permutations of [n] of the maximum of the lengths of increasing or decreasing subsequences.

Original entry on oeis.org

1, 4, 14, 70, 396, 2628, 20270, 175392, 1686374, 17920528, 208454628, 2629931688, 35774761662, 522351495684, 8149929922408, 135284126840592, 2380119357533974, 44243729657494640, 866599471539160876, 17839886344238238784, 385065445154671172880, 8695565142604747421416
Offset: 1

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> h(l)^2*max(l[1], nops(l)):
    g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);
  • Mathematica
    h[l_] := Function[n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[j > l[[k]], 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]][Length[l]];
    f[l_] := h[l]^2 Max[l[[1]], Length[l]];
    g[n_, i_, l_] := If[n == 0 || i == 1, f[Join[l, Table[1, {n}]]], g[n, i - 1, l] + g[n - i, Min[i, n - i], Append[l, i]]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Oct 31 2021, after Alois P. Heinz *)

Formula

A321274(n) < A003316(n) < a(n) for n > 1.

A321277 One half of the sum over all permutations of [n] of the absolute difference between the length of the longest increasing subsequence and the length of the longest decreasing subsequence.

Original entry on oeis.org

0, 1, 2, 12, 61, 367, 2805, 23372, 213317, 2189823, 24882811, 305633678, 4037554628, 57447084699, 877263905683, 14276260437624, 246201450585329, 4487236144246511, 86286209907252739, 1746559569805617910, 37106502447954647906, 825196425771658993531
Offset: 1

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> h(l)^2*abs(l[1]-nops(l))/2:
    g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);

Formula

a(n) = (1/2) * Sum_{k=1-n..n-1} abs(k) * A321316(n,k).

A321278 One half of the sum over all permutations of [n] of the squared difference between the length of the longest increasing subsequence and the length of the longest decreasing subsequence.

Original entry on oeis.org

0, 1, 4, 18, 105, 699, 5285, 45128, 431223, 4540775, 52268029, 653096124, 8810538490, 127622293057, 1975379879871, 32537074533872, 568268861724191, 10490690233451583, 204118868130889733, 4174977363687339452, 89554055679215605982, 2010207472655266461533
Offset: 1

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> h(l)^2*(l[1]-nops(l))^2/2:
    g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);

Formula

a(n) = (1/2) * Sum_{k=1-n..n-1} k^2 * A321316(n,k).

A321275 Sum over all permutations of [n] of the product of the lengths of longest increasing subsequence and longest decreasing subsequence.

Original entry on oeis.org

1, 4, 22, 132, 890, 6812, 58422, 555900, 5819658, 66554180, 825839718, 11054124886, 158795559000, 2437248222710, 39809464449676, 689538524084168, 12625142440334342, 243656361772961292, 4943801229819987022, 105212500452414418118, 2343513475564027153128
Offset: 1

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> h(l)^2*l[1]*nops(l):
    g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);

A321276 Sum over all permutations of [n] of the length of the longest increasing subsequence raised to the power of the length of the longest decreasing subsequence.

Original entry on oeis.org

1, 3, 20, 174, 1915, 25861, 407691, 7330188, 148016449, 3312032213, 81207824255, 2162810487154, 62125097028962, 1913156511113517, 62839800627095263, 2191735865280260976, 80859575674731497805, 3144804693463679033629, 128550453029684197431607
Offset: 1

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> h(l)^2*l[1]^nops(l):
    g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);
Showing 1-6 of 6 results.