A321276 Sum over all permutations of [n] of the length of the longest increasing subsequence raised to the power of the length of the longest decreasing subsequence.
1, 3, 20, 174, 1915, 25861, 407691, 7330188, 148016449, 3312032213, 81207824255, 2162810487154, 62125097028962, 1913156511113517, 62839800627095263, 2191735865280260976, 80859575674731497805, 3144804693463679033629, 128550453029684197431607
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..70
- Wikipedia, Longest increasing subsequence
Programs
-
Maple
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): f:= l-> h(l)^2*l[1]^nops(l): g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): a:= n-> g(n$2, []): seq(a(n), n=1..23);