cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321303 a(n) = floor(d(n) * n^(11/2)) where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 90, 841, 6144, 13975, 76188, 88934, 370727, 531441, 1264911, 1068291, 5171875, 2677431, 8049412, 11764186, 20971520, 11708440, 48100548, 21586130, 85865010, 74862807, 96690707, 61735233, 312069853, 146484375, 242333472, 298236431, 546412244, 220911835, 1064772651, 318800733, 1138875187
Offset: 1

Views

Author

Seiichi Manyama, Nov 03 2018

Keywords

Comments

|tau(n)| <= d(n) * n^(11/2) where tau(n) is Ramanujan function. So |tau(n)| <= a(n).
Ramanujan conjectured in 1916 that |tau(p)| <= 2 * p^(11/2) for all primes p and Pierre Deligne proved this conjecture in 1974. [Wikipedia] - Bernard Schott, Oct 24 2019

Crossrefs

Programs

  • Magma
    [Floor(NumberOfDivisors(n)*n^(11/2)): n in [1..32]]; // Marius A. Burtea, Oct 24 2019
    
  • Maple
    f:= n -> floor(numtheory:-tau(n)*n^(11/2)):
    map(f, [$1..100]); # Robert Israel, Oct 23 2019
  • Mathematica
    a[n_] := Floor[DivisorSigma[0, n] * n^(11/2)]; Array[a, 32] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = floor(numdiv(n) * n^(11/2)); \\ Amiram Eldar, Jan 07 2025