A321303 a(n) = floor(d(n) * n^(11/2)) where d(n) is the number of divisors of n.
1, 90, 841, 6144, 13975, 76188, 88934, 370727, 531441, 1264911, 1068291, 5171875, 2677431, 8049412, 11764186, 20971520, 11708440, 48100548, 21586130, 85865010, 74862807, 96690707, 61735233, 312069853, 146484375, 242333472, 298236431, 546412244, 220911835, 1064772651, 318800733, 1138875187
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Pierre Deligne, La conjecture de Weil. I, Publications Mathématiques de l’Institut des Hautes Scientifiques, Vol. 43 (1974), pp. 273-307; alternative link.
- Srinivasa Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc., Vol. 22, No. 9 (1916), pp. 159-184.
- Eric Weisstein's World of Mathematics, Tau Function.
- Wikipedia, Ramanujan tau function.
Programs
-
Magma
[Floor(NumberOfDivisors(n)*n^(11/2)): n in [1..32]]; // Marius A. Burtea, Oct 24 2019
-
Maple
f:= n -> floor(numtheory:-tau(n)*n^(11/2)): map(f, [$1..100]); # Robert Israel, Oct 23 2019
-
Mathematica
a[n_] := Floor[DivisorSigma[0, n] * n^(11/2)]; Array[a, 32] (* Amiram Eldar, Jan 07 2025 *)
-
PARI
a(n) = floor(numdiv(n) * n^(11/2)); \\ Amiram Eldar, Jan 07 2025
Comments