A321306 The number of connected weighted cubic graphs with weight n on 6 vertices.
2, 2, 7, 12, 26, 41, 76, 113, 183, 264, 393, 543, 768, 1024, 1385, 1801, 2355, 2989, 3811, 4740, 5911, 7234, 8857, 10680, 12883, 15336, 18254, 21496, 25293, 29491, 34361, 39713, 45860, 52598, 60260, 68627, 78079, 88354, 99882, 112385, 126316, 141379, 158082, 176080
Offset: 6
Examples
a(6)=2 because there are 2 cubic graphs (see A002851), and if the weight is the same as the number of vertices, there is one case for each.
Links
- Andrew Howroyd, Table of n, a(n) for n = 6..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,0,-2,3,-2,1,1,-2,3,-2,0,-1,0,2,-1).
Formula
G.f.: (x^10 +3*x^8 -x^7 +4*x^6 +4*x^4 +3*x^2 -2*x+2) *x^6/((-1+x)^6 *(1+x)^3 *(1+x^2) *(x^2+x+1)^2 *(x^2-x+1)).
Extensions
Terms a(36) and beyond from Andrew Howroyd, Apr 27 2020
Comments