cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005513 Number of n-bead bracelets (turnover necklaces) of two colors with 6 red beads and n-6 black beads.

Original entry on oeis.org

1, 1, 4, 7, 16, 26, 50, 76, 126, 185, 280, 392, 561, 756, 1032, 1353, 1782, 2277, 2920, 3652, 4576, 5626, 6916, 8372, 10133, 12103, 14448, 17063, 20128, 23528, 27474, 31824, 36822, 42315, 48564, 55404, 63133, 71554, 81004
Offset: 6

Views

Author

Keywords

Comments

From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent (turnover) necklaces of 6 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=6 (see our comment to A032279).
(End)
Also number of reverse invariant anonymous and neutral equivalence classes of preference profiles with 3 alternatives and (n-6) agents (IANC model). - Alexander Karpov, Apr 12 2018
Also the number of weighted cubic graphs with weight n derived from one of the 2 cubic graphs on 6 vertices (contributing to A321306). - R. J. Mathar, Nov 05 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Column k=6 of A052307.

Programs

  • Maple
    A005513 := proc(n) if n mod 6 = 0 then (24*binomial(n-1,5)+3*(n+1)*(n-2)*(n-4)+16*n)/288 elif n mod 6 = 3 then (24*binomial(n-1,5)+3*(n-1)*(n-3)*(n-5)+16*n-48)/288 elif n mod 6 = 2 or n mod 6 = 4 then (8*binomial(n-1,5)+(n+1)*(n-2)*(n-4))/96 elif n mod 6 = 1 or n mod 6 = 5 then (8*binomial(n-1,5)+(n-1)*(n-3)*(n-5))/96 fi: end: seq(A005513(n),n=6..44); # Johannes W. Meijer, Aug 11 2011
  • Mathematica
    k = 6; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    k=6; CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
    CoefficientList[Series[(1/12) (1/(1 - x)^6 + 4/(1 - x^2)^3 + 2/(1 - x^3)^2 + 3/((1 - x)^2 (1 - x^2)^2) + 2/(1 - x^6)), {x, 0, 43}], x] (* Vincenzo Librandi, Apr 24 2018 *)

Formula

S. J. Cyvin et al. (1997) give a g.f.
G.f.: (x^6/12)*(1/(1-x)^6+4/(1-x^2)^3+2/(1-x^3)^2+3/((1-x)^2*(1-x^2)^2)+2/(1-x^6)). - Vladeta Jovovic, Feb 28 2007
G.f.: x^6*(1-x+x^2+x^3+2*x^4+2*x^6+x^8-x^5) / ( (x^2-x+1)*(1+x+x^2)^2*(1+x)^3*(x-1)^6 ). - R. J. Mathar, Sep 18 2011
From Vladimir Shevelev, Apr 23 2011: (Start)
if n==0 mod 6, a(n)=(24*C(n-1,5)+3*(n+1)*(n-2)*(n-4)+16*n)/288;
if n==3 mod 6, a(n)=(24*C(n-1,5)+3*(n-1)*(n-3)*(n-5)+16*n-48)/288;
if n==2,4 mod 6, a(n)=(8*C(n-1,5)+(n+1)*(n-2)*(n-4))/96;
if n==1,5 mod 6, a(n)=(8*C(n-1,5)+(n-1)*(n-3)*(n-5))/96.
(End)

Extensions

Sequence extended and description corrected by Christian G. Bower
Name edited by Petros Hadjicostas, Jan 10 2019

A321307 The number of connected weighted cubic graphs with weight n on 8 vertices.

Original entry on oeis.org

5, 10, 41, 98, 257, 537, 1131, 2116, 3893, 6665, 11177, 17867, 28011, 42419, 63145, 91586, 130870, 183230, 253265, 344373, 463073, 614332, 807138, 1048517, 1350574, 1722948, 2181614, 2739523, 3417356, 4232137
Offset: 8

Views

Author

R. J. Mathar, Nov 03 2018

Keywords

Comments

Each vertex of the 5 simple cubic graphs is assigned an integer number (weight) >=1. The weight of the graph is the sum of the weights of the vertices.

Examples

			a(8)=5 because there are 5 cubic graphs (see A002851), and if the weight is the same as the number of vertices, there is one case for each.
		

Crossrefs

Cf. A026810 (4 vertices), A321306 (6 vertices).

Formula

G.f.: x^8*(x^18 +10*x^16 +5*x^15 +37*x^14 +8*x^13 +75*x^12 +16*x^11 +103*x^10 +16*x^9 +108*x^8 +13*x^7 +86*x^6 +3*x^5 +50*x^ 4+21*x^2 -5*x +5)/((-1+x)^8* (1+x)^4 *(x^2+x+1)^2 *(x^2-x+1) *(1+x^2)^2 *(1+x^4)).
Showing 1-2 of 2 results.