A321322 a(n) = Sum_{d|n} mu(n/d)*J_2(d), where J_2() is the Jordan function (A007434).
1, 2, 7, 9, 23, 14, 47, 36, 64, 46, 119, 63, 167, 94, 161, 144, 287, 128, 359, 207, 329, 238, 527, 252, 576, 334, 576, 423, 839, 322, 959, 576, 833, 574, 1081, 576, 1367, 718, 1169, 828, 1679, 658, 1847, 1071, 1472, 1054, 2207, 1008, 2304, 1152, 2009, 1503, 2807, 1152, 2737
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms.
Programs
-
Mathematica
Table[Sum[MoebiusMu[n/d] Sum[MoebiusMu[d/j] j^2, {j, Divisors[d]}], {d, Divisors[n]}], {n, 55}] nmax = 55; Rest[CoefficientList[Series[Sum[DivisorSum[k, MoebiusMu[#] MoebiusMu[k/#] &] x^k (1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] f[p_, e_] := If[e == 1, p^2 - 2, (p^2 - 1)^2*p^(2*e - 4)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 - X)^2/(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Dec 11 2021
Formula
G.f.: Sum_{k>=1} A007427(k)*x^k*(1 + x^k)/(1 - x^k)^3.
a(n) = Sum_{d|n} mu(n/d)*phi(d)*psi(d), where phi() is the Euler totient function (A000010) and psi() is the Dedekind psi function (A001615).
Multiplicative with a(p^e) = p^2 - 2 if e = 1 and (p^2 - 1)^2 * p^(2*e - 4) otherwise. - Amiram Eldar, Oct 26 2020
From Vaclav Kotesovec, Dec 11 2021: (Start)
Dirichlet g.f.: zeta(s-2) / zeta(s)^2.
Sum_{k=1..n} a(k) ~ n^3 / (3*zeta(3)^2). (End)
a(n) = Sum_{1 <= i, j <= n} mu(gcd(i, j, n)). - Peter Bala, Jan 21 2024
Comments