cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321322 a(n) = Sum_{d|n} mu(n/d)*J_2(d), where J_2() is the Jordan function (A007434).

Original entry on oeis.org

1, 2, 7, 9, 23, 14, 47, 36, 64, 46, 119, 63, 167, 94, 161, 144, 287, 128, 359, 207, 329, 238, 527, 252, 576, 334, 576, 423, 839, 322, 959, 576, 833, 574, 1081, 576, 1367, 718, 1169, 828, 1679, 658, 1847, 1071, 1472, 1054, 2207, 1008, 2304, 1152, 2009, 1503, 2807, 1152, 2737
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2018

Keywords

Comments

Möbius transform applied twice to squares.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Sum[MoebiusMu[d/j] j^2, {j, Divisors[d]}], {d, Divisors[n]}], {n, 55}]
    nmax = 55; Rest[CoefficientList[Series[Sum[DivisorSum[k, MoebiusMu[#] MoebiusMu[k/#] &] x^k (1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]]
    f[p_, e_] := If[e == 1, p^2 - 2, (p^2 - 1)^2*p^(2*e - 4)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^2/(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Dec 11 2021

Formula

G.f.: Sum_{k>=1} A007427(k)*x^k*(1 + x^k)/(1 - x^k)^3.
a(n) = Sum_{d|n} mu(n/d)*phi(d)*psi(d), where phi() is the Euler totient function (A000010) and psi() is the Dedekind psi function (A001615).
Multiplicative with a(p^e) = p^2 - 2 if e = 1 and (p^2 - 1)^2 * p^(2*e - 4) otherwise. - Amiram Eldar, Oct 26 2020
From Vaclav Kotesovec, Dec 11 2021: (Start)
Dirichlet g.f.: zeta(s-2) / zeta(s)^2.
Sum_{k=1..n} a(k) ~ n^3 / (3*zeta(3)^2). (End)
a(n) = Sum_{1 <= i, j <= n} mu(gcd(i, j, n)). - Peter Bala, Jan 21 2024