A321331 Triangle read by rows: T(n, k) = (k+1)*S2(n+1, k+1), for n >= k >= 0, and S2 = A048993 (Stirling2).
1, 1, 2, 1, 6, 3, 1, 14, 18, 4, 1, 30, 75, 40, 5, 1, 62, 270, 260, 75, 6, 1, 126, 903, 1400, 700, 126, 7, 1, 254, 2898, 6804, 5250, 1596, 196, 8, 1, 510, 9075, 31080, 34755, 15876, 3234, 288, 9, 1, 1022, 27990, 136420, 212625, 136962, 41160, 6000, 405, 10, 1, 2046, 85503, 583000, 1233650, 1076922, 447909, 95040, 10395, 550, 11
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... ---------------------------------------------------------------------- 0: 1 1: 1 2 2: 1 6 3 3: 1 14 18 4 4: 1 30 75 40 5 5: 1 62 270 260 75 6 6: 1 126 903 1400 700 126 7 7: 1 254 2898 6804 5250 1596 196 8 8: 1 510 9075 31080 34755 15876 3234 288 9 9: 1 1022 27990 136420 212625 136962 41160 6000 405 10 10: 1 2046 85503 583000 1233650 1076922 447909 95040 10395 550 11 ... Recurrence (from Stirling2): T(4, 2) = 3*(T(3, 2) + T(3, 1)/2) = 3*(18 + 14/2) = 75. Recurrence (from a- and z-sequence): T(4, 0) = 5*((1/2)*T(3, 0) - (1/12)*T(3, 1) + (1/12)*T(3, 2) - (19/120)*T(3, 3)) = 5*(1/2 - 14/12 + 18/12 - 4*19/120) = 1; T(4,2) = (5/2)*(1*1*T(3, 1) + 2*(1/2)*T(3, 2) + 3*(-1/6)* T(3, 3)) = (5/2)*(14 + 18 - 2) = 75. Recurrence for column k=2 (Boas-Buck-type): T(4, 2) = (5!*3/2)*((1/3!)*(1/12)*T(2, 2) + (1/4!)*(1/2)*T(3, 2)) = (5!*3/2)*((1/72)*3 + (1/48)*18) = 75. Meixner identity for the row polynomials, for n = 3: {d/dx - (1/2)*(d/dx)^2 + (1/3)*(d/dx)^3)}*R(3, x)/4) = ((14 - 36/2 + 24/3) + (36 - 24/2)*x + 12*x^2)/4 = (1 + 6*x + 3*x^2) = R(2, x). Roman type recurrence for row polynomials: R(n, 3) = (3/2)*{(x + 1/12)*(1 + 6*x + 3*x^2) + (x - (-1/2))*(6 + 6*x) - (1/2!)*(1/12)*6} = 1 + 14*x + 18*x^2 + 4*x^3.
References
- Steven Roman, The umbral calculus, Academic Press, 1984.
Links
- Wolfdieter Lang, On the Generating Functions of the Boas-Buck Sequences for the Inverse of Riordan and Sheffer Matrices
- J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. Lond. Math. Soc. 9 (1934), 6-13.
Programs
-
GAP
Flat(List([0..10],n->List([0..n],k->(k+1)*Stirling2(n+1,k+1)))); # Muniru A Asiru, Dec 03 2018
-
Maple
T:=(n,k)->(k+1)*Stirling2(n+1,k+1): seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Dec 03 2018
-
Mathematica
T[n_, k_] := (k+1) * StirlingS2[n+1, k+1]; Table[T[n, k], {n,0,10}, {k, 0, n}] //Flatten (* Amiram Eldar, Dec 03 2018 *)
-
PARI
T(n, k) = (k+1)*stirling(n+1, k+1, 2) \\ Thomas Scheuerle, Nov 10 2023
-
Sage
# uses[riordan_square from A321620] riordan_square(exp(x) - 1, 10, True) # Peter Luschny, Jan 03 2019
Formula
T(n, k) = (n+1)*(Narumi[a=-1])^(-1)(n, k), with the Narumi[a=-1] matrix with entries (-1)^(n-k)*A028421(n, k)/(n+1).
E.g.f. for column k sequence: E(k, x) = (x*d/dx + 1)*EN(k, x), where EN(k, x) = (exp(x) - 1)^(k+1)/(x*k!) is the e.g.f. for the (Narumi[a=-1])^(-1) columns. Hence E(k, x) = exp(x)*(exp(x) - 1)*(k+1)/k!, for k >= 0.
E.g.f. for (ordinary) row polynomials R(n, x): Epol(z, x) = exp(z)*exp(x*(exp(z) - 1))*(1 + x*(exp(z) - 1)).
Recurrence (from Stirling2): T(n, k) = 0 for n < k; T(n, 0) = (k + 1)*T(n-1, k), for n <= 1, T(0, 0) = 1; T(n, k) = (k+1)*(T(n-1, k) + T(n-1, k-1)/k), for n >= 1, k >= 1.
Recurrence (from a- and z-sequence, see above): a = {1, 1/2, -1/6, 1/4, -19/30, 9/4, ...}, z = {1/2, -1/12, 1/12, -19/120, 9/20, -863/504, ...}.
T(n, k) = 0, for n < k; T(n, 0) = (n+1)*Sum_{j=0..n-1} z(j)*T(n-1, j), for n >= 1, with T(0, 0) = 1; T(n, k) = ((n+1)/k)*Sum_{j=0..n-m} binomial(k-1+j, j)*a(j)*T(n-1, k-1+j).
Recurrence for column k, from the Boas-Buck-type sequence BB(n) = (-1)^(n+1)*A060054(n+1)/A227830(n+1), for n >= 0; BB = {1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, ...}: T(n, k) = 0, for n < k; T(n, n) = n+1, for n >= 0; T(n, k) = ((n+1)!*(k+1)/(n-k))*Sum_{j=k..n-1} (1/(j+1)!)*BB(n-(j+1))*T(j, k), for n >= 0 and k = 0, 1, ..., n-1.
T(n, k) = Stirling2(n+2, k+1) - Stirling2(n+1, k). - Peter Luschny, May 26 2020
Comments