cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321331 Triangle read by rows: T(n, k) = (k+1)*S2(n+1, k+1), for n >= k >= 0, and S2 = A048993 (Stirling2).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 14, 18, 4, 1, 30, 75, 40, 5, 1, 62, 270, 260, 75, 6, 1, 126, 903, 1400, 700, 126, 7, 1, 254, 2898, 6804, 5250, 1596, 196, 8, 1, 510, 9075, 31080, 34755, 15876, 3234, 288, 9, 1, 1022, 27990, 136420, 212625, 136962, 41160, 6000, 405, 10, 1, 2046, 85503, 583000, 1233650, 1076922, 447909, 95040, 10395, 550, 11
Offset: 0

Views

Author

Wolfdieter Lang, Dec 03 2018

Keywords

Comments

This lower triangular matrix T is the inverse of the triangular matrix with elements Narumi[-1](n,m)/(m+1) = S1(n+1, m+1)/(n+1), with the Narumi triangle for parameter a = -1, and S1 = A048994 (Stirling1), i.e., Sum_{k=m..n} T(n, k) * S1(k+1, m+1)/(k+1) = delta_{n,m} (Kronecker symbol).
This triangle arises from the inverse of the rational Sheffer matrix Narumi[-1] = (log(1+x)/x, log(1+x) (such special Sheffer matrices (g(x), x*g(x)) define elements of the Narumi subgroup). The inverse matrix is (Narumi[-1])^(-1) = ((exp(x) - 1)/x, exp(x) - 1).
In order to have an integer matrix one takes T(n, k) := (n+1)*(Narumi[-1])^(-1)(n, k) = (k+1)*S2(n+1, k+1). The connection to S2 = A048993 results from the general relation between each Narumi-type matrix N = (g(x), x*g(x)) and its associated Sheffer matrix J = (1, x*g(x)) (this is of the Jabotinsky-type), i.e., N(n, m) = (m+1)*J(n+1, m+1)/(n+1), or with the row polynomials Npol(n, x) = (1/(n+1))*(d/dx)Jpol(n+1, x).
The signed triangle (-1)^(n-k)*A028421(n, k) (with upper diagonals filled with zeros) gives the integer matrix Nscaled with elements (n+1)*Narumi[-1](n,k). This inverse of Nscaled has the rational elements (Narumi[-1])^(-1)(k, m)/(m+1) = (1/(k+1))*S2(k+1, m+1).
The a- and z- sequence for the Sheffer matrix (Narumi[-1])^(-1) (see A006232 for a link on these sequences) have e.g.f.s Ea(x) = x/log(1 + x) and Ez(x) = 1/log(1 + x) - 1/x, hence a(n) = A006232(n)/A006233(n) and z(n) = A006232(n+1)/A075178(n), for n >= 0. This leads to the recurrence for T(n, k) given in the formula section.
The Boas-Buck-type column recurrence (see the link, also for references) uses the sequence with o.g.f. GBB(y) = exp(y)/(exp(y) - 1) - 1/y, with BB(n) = (-1)^(n+1)*A060054(n+1 ) / A227830(n+1), for n >= 1. For the recurrence see the formula section.
The Meixner-type identity (see the Meixner link) for the row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, derived from the one for the Narumi[-1]^(-1) row polynomials is Sum_{k=1..n} (-1)^{k+1}*(1/k)*(d/dx)^k R(n, x)/(n+1) = R(n-1, x), for n >= 1, and R(0, x) = 1. Here d/dx is a differentiation operator.
The Roman-type recurrence for the row polynomials (see the reference, Corollary 3.7.2. p. 50) becomes, with the z-sequence from above: R(n, x) = ((n+1)/n)*{(x + 1/2)*1 + (x - z(1))*d/dx - Sum_{k=2..n-1} (1/k!)*z(k)*(d/dx)^k}*R(n-1, x), for n >= 1, and R(0, x) = 1.
The triangle is the exponential Riordan square (cf. A321620) of exp(x)-1 with an additional main diagonal of zeros. - Peter Luschny, Jan 03 2019

Examples

			The triangle T(n, k) begins:
  n\k  0    1     2      3       4       5      6     7     8   9 10 ...
  ----------------------------------------------------------------------
  0:   1
  1:   1    2
  2:   1    6     3
  3:   1   14    18      4
  4:   1   30    75     40       5
  5:   1   62   270    260      75       6
  6:   1  126   903   1400     700     126      7
  7:   1  254  2898   6804    5250    1596    196     8
  8:   1  510  9075  31080   34755   15876   3234   288     9
  9:   1 1022 27990 136420  212625  136962  41160  6000   405  10
  10:  1 2046 85503 583000 1233650 1076922 447909 95040 10395 550 11
  ...
Recurrence (from Stirling2): T(4, 2) = 3*(T(3, 2) + T(3, 1)/2) = 3*(18 + 14/2) = 75.
Recurrence (from a- and z-sequence): T(4, 0) = 5*((1/2)*T(3, 0) - (1/12)*T(3, 1) + (1/12)*T(3, 2) - (19/120)*T(3, 3)) = 5*(1/2 - 14/12 + 18/12 - 4*19/120) = 1; T(4,2) = (5/2)*(1*1*T(3, 1) + 2*(1/2)*T(3, 2) + 3*(-1/6)* T(3, 3)) = (5/2)*(14 + 18 - 2) = 75.
Recurrence for column k=2 (Boas-Buck-type): T(4, 2) = (5!*3/2)*((1/3!)*(1/12)*T(2, 2) + (1/4!)*(1/2)*T(3, 2)) = (5!*3/2)*((1/72)*3 + (1/48)*18) = 75.
Meixner identity for the row polynomials, for n = 3: {d/dx  - (1/2)*(d/dx)^2 + (1/3)*(d/dx)^3)}*R(3, x)/4) = ((14 - 36/2 + 24/3) + (36 - 24/2)*x + 12*x^2)/4 = (1 + 6*x + 3*x^2) = R(2, x).
Roman type recurrence for row polynomials: R(n, 3) = (3/2)*{(x + 1/12)*(1 + 6*x + 3*x^2) + (x - (-1/2))*(6 + 6*x) - (1/2!)*(1/12)*6} = 1 + 14*x + 18*x^2 + 4*x^3.
		

References

  • Steven Roman, The umbral calculus, Academic Press, 1984.

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(k+1)*Stirling2(n+1,k+1)))); # Muniru A Asiru, Dec 03 2018
    
  • Maple
    T:=(n,k)->(k+1)*Stirling2(n+1,k+1): seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Dec 03 2018
  • Mathematica
    T[n_, k_] := (k+1) * StirlingS2[n+1, k+1];  Table[T[n, k], {n,0,10}, {k, 0, n}] //Flatten (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    T(n, k) = (k+1)*stirling(n+1, k+1, 2) \\ Thomas Scheuerle, Nov 10 2023
  • Sage
    # uses[riordan_square from A321620]
    riordan_square(exp(x) - 1, 10, True) # Peter Luschny, Jan 03 2019
    

Formula

T(n, k) = (k+1)*A048993(n+1, k+1), with A048993 = Stirling2, for n >= k >= 0, and 0 otherwise.
T(n, k) = (n+1)*(Narumi[a=-1])^(-1)(n, k), with the Narumi[a=-1] matrix with entries (-1)^(n-k)*A028421(n, k)/(n+1).
E.g.f. for column k sequence: E(k, x) = (x*d/dx + 1)*EN(k, x), where EN(k, x) = (exp(x) - 1)^(k+1)/(x*k!) is the e.g.f. for the (Narumi[a=-1])^(-1) columns. Hence E(k, x) = exp(x)*(exp(x) - 1)*(k+1)/k!, for k >= 0.
E.g.f. for (ordinary) row polynomials R(n, x): Epol(z, x) = exp(z)*exp(x*(exp(z) - 1))*(1 + x*(exp(z) - 1)).
Recurrence (from Stirling2): T(n, k) = 0 for n < k; T(n, 0) = (k + 1)*T(n-1, k), for n <= 1, T(0, 0) = 1; T(n, k) = (k+1)*(T(n-1, k) + T(n-1, k-1)/k), for n >= 1, k >= 1.
Recurrence (from a- and z-sequence, see above): a = {1, 1/2, -1/6, 1/4, -19/30, 9/4, ...}, z = {1/2, -1/12, 1/12, -19/120, 9/20, -863/504, ...}.
T(n, k) = 0, for n < k; T(n, 0) = (n+1)*Sum_{j=0..n-1} z(j)*T(n-1, j), for n >= 1, with T(0, 0) = 1; T(n, k) = ((n+1)/k)*Sum_{j=0..n-m} binomial(k-1+j, j)*a(j)*T(n-1, k-1+j).
Recurrence for column k, from the Boas-Buck-type sequence BB(n) = (-1)^(n+1)*A060054(n+1)/A227830(n+1), for n >= 0; BB = {1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, ...}: T(n, k) = 0, for n < k; T(n, n) = n+1, for n >= 0; T(n, k) = ((n+1)!*(k+1)/(n-k))*Sum_{j=k..n-1} (1/(j+1)!)*BB(n-(j+1))*T(j, k), for n >= 0 and k = 0, 1, ..., n-1.
T(n, k) = Stirling2(n+2, k+1) - Stirling2(n+1, k). - Peter Luschny, May 26 2020