A345461
Triangle T(n,k) (n >= 1, 0 <= k <= n-1) read by rows: number of distinct permutations after k steps of the "optimist" algorithm.
Original entry on oeis.org
1, 2, 1, 6, 1, 1, 24, 6, 1, 1, 120, 38, 7, 1, 1, 720, 232, 53, 7, 1, 1, 5040, 1607, 404, 74, 7, 1, 1, 40320, 12984, 3383, 732, 108, 7, 1, 1, 362880, 117513, 31572, 7043, 1292, 167, 9, 1, 1, 3628800, 1182540, 324112, 75350, 14522, 2384, 260, 11, 1, 1
Offset: 1
Triangle begins:
.
1;
2, 1;
6, 1, 1;
24, 6, 1, 1;
120, 38, 7, 1, 1;
720, 232, 53, 7, 1, 1;
5040, 1607, 404, 74, 7, 1, 1;
.
Cf.
A345453 (permutations according to number of steps for sorting).
Cf.
A345462 (the equivalent for Stirling numbers of 1st kind).
A345462
Triangle T(n,k) (n >= 1, 0 <= k <= n-1) read by rows: number of distinct permutations after k steps of the "first transposition" algorithm.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 24, 13, 4, 1, 120, 67, 23, 5, 1, 720, 411, 146, 36, 6, 1, 5040, 2921, 1067, 272, 52, 7, 1, 40320, 23633, 8800, 2311, 456, 71, 8, 1, 362880, 214551, 81055, 21723, 4419, 709, 93, 9, 1, 3628800, 2160343, 825382, 224650, 46654, 7720, 1042, 118, 10, 1
Offset: 1
Triangle begins:
1;
2, 1;
6, 3, 1;
24, 13, 4, 1;
120, 67, 23, 5, 1;
720, 411, 146, 36, 6, 1;
5040, 2921, 1067, 272, 52, 7, 1;
40320, 23633, 8800, 2311, 456, 71, 8, 1;
...
- D. E. Knuth, The Art of Computer Programming, Vol. 3 / Sorting and Searching, Addison-Wesley, 1973.
Cf.
A107111 a triangle with some common parts.
-
b:= proc(n, k) option remember; (k+1)!*
binomial(n, k)*add((-1)^i/i!, i=0..k+1)/n
end:
T:= proc(n, k) option remember;
`if`(k=0, n!, T(n, k-1)-b(n, n-k+1))
end:
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Aug 11 2021
-
b[n_, k_] := b[n, k] = (k+1)!*Binomial[n, k]*Sum[(-1)^i/i!, {i, 0, k+1}]/n;
T[n_, k_] := T[n, k] = If[k == 0, n!, T[n, k-1] - b[n, n-k+1]];
Table[Table[T[n, k], {k, 0, n - 1}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
Showing 1-2 of 2 results.
Comments