cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321359 Expansion of Product_{1 <= i <= j <= k} (1 + x^(i*j*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 21, 27, 38, 49, 63, 84, 108, 137, 179, 226, 286, 365, 457, 570, 720, 894, 1106, 1378, 1700, 2087, 2577, 3151, 3847, 4707, 5723, 6941, 8439, 10197, 12300, 14852, 17863, 21433, 25740, 30797, 36794, 43963, 52372, 62288, 74098, 87905, 104149
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A034836(k).

A321361 Expansion of Product_{1 <= i <= j <= k} (1 - x^(i*j*k)).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 0, 2, -1, 0, 3, -1, -2, -1, 1, -6, 0, -1, -1, 0, 6, 1, 1, 0, 4, 0, 0, 10, -2, -1, -9, 7, -11, 13, -15, -7, -3, -9, 0, 6, -3, -9, 14, -9, 20, -17, 20, -2, 20, 1, 25, -9, 14, 13, -3, -7, -21, -9, -11, 6, -54, 39, -22, -30, -10, 35, -21, 8, -41, -23
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Convolution inverse of A321360.

Formula

G.f.: Product_{k>0} (1 - x^k)^A034836(k).

A321566 Expansion of Product_{1 <= i_1 <= i_2 <= i_3 <= i_4} 1/(1 - x^(i_1*i_2*i_3*i_4)).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 32, 44, 67, 91, 139, 186, 269, 362, 518, 687, 960, 1267, 1747, 2294, 3106, 4052, 5449, 7063, 9365, 12092, 15914, 20422, 26639, 34029, 44090, 56075, 72108, 91303, 116802, 147264, 187210, 235182, 297562, 372346, 468777, 584553, 732803, 910744
Offset: 0

Views

Author

Seiichi Manyama, Nov 13 2018

Keywords

Crossrefs

Product_{1 <= i_1 <= i_2 <= ... <= i_b} 1/(1 - x^(i_1 * i_2 * ... * i_b)): A000041 (b=1), A182269 (b=2), A321360 (b=3), this sequence (b=4).

Formula

Euler transform of A218320.
G.f.: Product_{k>0} 1/(1 - x^k)^A218320(k).

A321375 Expansion of Product_{1 < i <= j <= k} 1/(1 - x^(i*j*k)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 5, 0, 1, 1, 4, 0, 2, 0, 9, 0, 2, 1, 12, 0, 3, 1, 16, 0, 7, 2, 20, 2, 6, 2, 36, 0, 13, 5, 37, 2, 21, 4, 60, 3, 23, 9, 80, 4, 35, 14, 106, 5, 58, 16, 137, 12, 66, 22, 210, 10, 100, 40, 238, 22, 147
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Crossrefs

Formula

Euler transform of A122179.
G.f.: Product_{k>0} 1/(1 - x^k)^A122179(k).
Showing 1-4 of 4 results.