cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321359 Expansion of Product_{1 <= i <= j <= k} (1 + x^(i*j*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 21, 27, 38, 49, 63, 84, 108, 137, 179, 226, 286, 365, 457, 570, 720, 894, 1106, 1378, 1700, 2087, 2577, 3151, 3847, 4707, 5723, 6941, 8439, 10197, 12300, 14852, 17863, 21433, 25740, 30797, 36794, 43963, 52372, 62288, 74098, 87905, 104149
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A034836(k).

A321360 Expansion of Product_{1 <= i <= j <= k} 1/(1 - x^(i*j*k)).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 32, 44, 67, 91, 139, 186, 269, 362, 517, 686, 958, 1264, 1741, 2286, 3092, 4033, 5416, 7018, 9296, 11998, 15769, 20228, 26356, 33648, 43539, 55343, 71079, 89942, 114909, 144775, 183819, 230746, 291557, 364544, 458371, 571084, 714971, 887798, 1106704
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Formula

Euler transform of A034836.
G.f.: Product_{k>0} 1/(1 - x^k)^A034836(k).

A321376 Expansion of Product_{1 < i <= j <= k} (1 - x^(i*j*k)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 1, 4, 0, 0, 0, 2, 0, -1, 1, 2, 0, 0, -1, 2, 1, -1, -1, -1, 0, -2, 0, -4, -1, 2, -2, -3, 0, -4, -4, -1, -1, -6, -2, -7, 0, 2, -2, -10
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 - x^k)^A122179(k).

A319517 Expansion of Product_{1 <= i_1 <= i_2 <= i_3 <= i_4} (1 - x^(i_1*i_2*i_3*i_4)).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 0, 2, -1, 0, 3, -1, -2, -1, 1, -6, -1, 0, 0, 0, 7, -1, 1, -2, 4, 1, -2, 11, 1, -2, -10, 11, -11, 15, -16, -6, -7, -10, -1, 10, -5, -10, 12, -20, 19, -16, 24, -2, 28, -9, 41, -6, 15, 20, 4, -21, -15, -13, -14, 13, -73, 67, -30, -44, -19, 31, -30
Offset: 0

Views

Author

Seiichi Manyama, Nov 14 2018

Keywords

Crossrefs

Convolution inverse of A321566.
Product_{1 <= i_1 <= i_2 <= ... <= i_b} (1 - x^(i_1 * i_2 * ... * i_b)): A010815 (b=1), A321299 (b=2), A321361 (b=3), this sequence (b=4).

Formula

G.f.: Product_{k>0} (1 - x^k)^A218320(k).
Showing 1-4 of 4 results.