cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321397 a is the limit of A321396.

Original entry on oeis.org

0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 37, 105, 131, 364, 464, 1269, 1690, 4478, 6163, 16070, 22582, 58197, 83431, 212337, 309890, 780706, 1155906, 2888189, 4331109, 10739640, 16291293, 40123020, 61483211, 150518418, 232754753, 566704138, 883597884, 2140614523
Offset: 0

Views

Author

Peter Luschny, Nov 11 2018

Keywords

Comments

The sequence a is the limit of the square array A321396 means, that for every fixed k the terms in column k of A321396 differ from a(k) only for finitely many indices.

Crossrefs

Cf. A321396.

Programs

  • Mathematica
    terms = 38; gf[-1] = 1; gf[n_] := gf[n] = (1-Sqrt[1-4z^2 gf[n -1]])/(2z);
    row[n_] := row[n] = gf[n]/z^n + O[z]^terms // CoefficientList[#, z]&;
    row[n = 1]; row[n++]; While[Print[n]; row[n] != row[n-1], n++];
    A321397 = row[n] (* Jean-François Alcover, Dec 08 2018 *)

A321395 Antidiagonal sums of A321396.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 5, 13, 15, 37, 45, 116, 142, 371, 475, 1226, 1610, 4175, 5561, 14454, 19574, 50743, 69725, 180503, 250777, 648541, 910317, 2349582, 3329020, 8575583, 12250279, 31498125, 45331627
Offset: 0

Views

Author

Peter Luschny, Nov 11 2018

Keywords

Crossrefs

Cf. A321396.

A300126 Number of Motzkin trees that are "uniquely closable skeletons".

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 2, 7, 5, 20, 19, 60, 62, 202, 202, 679, 711, 2304, 2507, 8046, 8856, 28434, 31855, 101288, 115596, 364710, 421654, 1323946, 1549090, 4836072, 5724582, 17771683, 21250527, 65653884, 79227989, 243639954, 296543356, 907841678, 1113706887
Offset: 0

Views

Author

Michael De Vlieger, Feb 25 2018

Keywords

Comments

From the Bodini-Tarau paper: "Uniquely closable skeletons of lambda terms are Motzkin-trees that predetermine the unique closed lambda term that can be obtained by labeling their leaves with de Bruijn indices".
For the relation to the set of Motzkin trees where all leaves are at the same unary height see A321396. - Peter Luschny, Nov 14 2018

Crossrefs

Cf. A000108, A001006, A135501, A321396 (row 1).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( (1-Sqrt(1 + 2*x*(Sqrt(1-4*x^2) -1)))/(2*x^2) )); // G. C. Greubel, Nov 14 2018
    
  • Maple
    gf := -(sqrt(2*z*(sqrt(1 - 4*z^2) - 1) + 1) - 1)/(2*z^2):
    series(gf, z, 44): seq(coeff(%, z, n), n=0..38); # Peter Luschny, Nov 14 2018
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1 + 2*x*(Sqrt[1-4*x^2]-1)])/(2*x^2), {x,0, 50}], x] (* G. C. Greubel, Nov 14 2018 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((1-sqrt(1 + 2*x*(sqrt(1-4*x^2) -1)))/(2*x^2))) \\ G. C. Greubel, Nov 14 2018
    
  • Sage
    s= (-(sqrt(2*x*(sqrt(1 - 4*x^2) - 1) + 1) - 1)/(2*x^2)).series(x, 30);
    s.coefficients(x, sparse=False) # G. C. Greubel, Nov 14 2018

Formula

G.f.: -(sqrt(2*z*(sqrt(1 - 4*z^2) - 1) + 1) - 1)/(2*z^2). - Peter Luschny, Nov 14 2018

A321572 Related to the set of Motzkin trees where all leaves are at the same unary height 2.

Original entry on oeis.org

0, 1, 0, 1, 1, 3, 2, 9, 7, 27, 25, 85, 86, 287, 296, 975, 1065, 3369, 3825, 11887, 13836, 42389, 50597, 152549, 186186, 554103, 688494, 2027304, 2559958, 7461971, 9561298, 27617581, 35846863, 102707431, 134874639, 383561963, 509090498, 1437822479, 1927045425
Offset: 0

Views

Author

Peter Luschny, Nov 14 2018

Keywords

Comments

Row 2 of A321396, see section 3.2 in O. Bodini et al.

Crossrefs

Cf. A321396.

Programs

  • Maple
    gf := -(sqrt(2*z*(sqrt(2*z*(sqrt(1-4*z^2)-1)+1)-1)+1)-1)/(2*z^3):
    series(gf,z,44): seq(coeff(%,z,n), n=0..38);
  • Mathematica
    CoefficientList[(1 - Sqrt[2 Sqrt[2 Sqrt[1 - 4z^2] z - 2z + 1] z - 2z + 1])/ (2z^3) + O[z]^40, z] (* Jean-François Alcover, Jun 03 2019 *)

Formula

G.f.: (1 - sqrt(1 - 2*z + 2*z*sqrt(1 - 2*z + 2*z*sqrt(1 - 4*z^2))))/(2*z^3).
Showing 1-4 of 4 results.