A321403 Number of non-isomorphic self-dual set multipartitions (multisets of sets) of weight n.
1, 1, 1, 2, 4, 6, 10, 17, 32, 56, 98, 177, 335, 620, 1164, 2231, 4349, 8511, 16870, 33844, 68746, 140894, 291698, 610051, 1288594, 2745916, 5903988, 12805313, 28010036, 61764992, 137281977, 307488896, 693912297, 1577386813, 3611241900, 8324940862, 19321470086
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(7) = 17 set multipartitions: {{1}} {{1},{2}} {{2},{1,2}} {{1,2},{1,2}} {{1},{2,3},{2,3}} {{1},{2},{3}} {{1},{1},{2,3}} {{2},{1,3},{2,3}} {{1},{3},{2,3}} {{3},{3},{1,2,3}} {{1},{2},{3},{4}} {{1},{2},{2},{3,4}} {{1},{2},{4},{3,4}} {{1},{2},{3},{4},{5}} . {{1,2},{1,3},{2,3}} {{1,3},{2,3},{1,2,3}} {{3},{2,3},{1,2,3}} {{1},{1},{1,4},{2,3,4}} {{1},{1},{1},{2,3,4}} {{1},{2,3},{2,4},{3,4}} {{1},{2},{3,4},{3,4}} {{1},{4},{3,4},{2,3,4}} {{1},{3},{2,4},{3,4}} {{2},{1,2},{3,4},{3,4}} {{1},{4},{4},{2,3,4}} {{2},{1,3},{2,4},{3,4}} {{2},{4},{1,2},{3,4}} {{3},{4},{1,4},{2,3,4}} {{1},{2},{3},{3},{4,5}} {{4},{4},{4},{1,2,3,4}} {{1},{2},{3},{5},{4,5}} {{1},{1},{5},{2,3},{4,5}} {{1},{2},{3},{4},{5},{6}} {{1},{2},{2},{2},{3,4,5}} {{1},{2},{3},{4,5},{4,5}} {{1},{2},{4},{3,5},{4,5}} {{1},{2},{5},{5},{3,4,5}} {{1},{3},{5},{2,3},{4,5}} {{1},{2},{3},{4},{4},{5,6}} {{1},{2},{3},{4},{6},{5,6}} {{1},{2},{3},{4},{5},{6},{7}} Inequivalent representatives of the a(6) = 10 matrices: [0 0 1] [1 1 0] [0 1 1] [1 0 1] [1 1 1] [0 1 1] . [1 0 0 0] [1 0 0 0] [1 0 0 0] [1 0 0 0] [0 1 0 0] [1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1] [0 0 0 1] [1 0 0 0] [0 0 1 1] [0 1 0 1] [0 0 0 1] [1 1 0 0] [0 1 1 1] [0 0 1 1] [0 0 1 1] [0 1 1 1] [0 0 1 1] . [1 0 0 0 0] [1 0 0 0 0] [0 1 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 1 0 0] [0 0 1 0 0] [0 0 0 0 1] [0 0 0 1 1] [0 0 0 1 1] . [1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} c(p, k)={polcoef((prod(i=2, #p, prod(j=1, i-1, (1 + x^(2*lcm(p[i], p[j])) + O(x*x^k))^gcd(p[i], p[j]))) * prod(i=1, #p, my(t=p[i]); (1 + x^t + O(x*x^k))^(t%2)*(1 + x^(2*t) + O(x*x^k))^(t\2) )), k)} a(n)={my(s=0); forpart(p=n, s+=permcount(p)*c(p, n)); s/n!} \\ Andrew Howroyd, May 31 2023
Extensions
Terms a(11) and beyond from Andrew Howroyd, May 31 2023
Comments