A321407 Number of non-isomorphic multiset partitions of weight n with no constant parts.
1, 0, 1, 2, 7, 13, 47, 111, 367, 1057, 3474, 11116, 38106, 131235, 470882, 1720959, 6472129, 24860957, 97779665, 392642763, 1610045000, 6732768139, 28699327441, 124600601174, 550684155992, 2476019025827, 11320106871951, 52598300581495, 248265707440448, 1189855827112636, 5787965846277749
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions: {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,1,2,2,2}} {{1,2,3}} {{1,2,2,2}} {{1,2,2,2,2}} {{1,2,3,3}} {{1,2,2,3,3}} {{1,2,3,4}} {{1,2,3,3,3}} {{1,2},{1,2}} {{1,2,3,4,4}} {{1,2},{3,4}} {{1,2,3,4,5}} {{1,3},{2,3}} {{1,2},{1,2,2}} {{1,2},{2,3,3}} {{1,2},{3,4,4}} {{1,2},{3,4,5}} {{1,3},{2,3,3}} {{1,4},{2,3,4}} {{2,3},{1,2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} S(q, t, k)={sum(j=1, #q, if(t%q[j]==0, q[j]))*vector(k,i,1)} a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(x*Ser(K(q, t, n\t)-S(q, t, n\t))/t, x, x^t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 17 2023
Extensions
Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023
Comments